K11n185: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
⚫ | |||
<!-- This page was |
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite_Splice_Base]]. Please do not edit! |
||
⚫ | |||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite_Splice_Base]]. --> |
|||
⚫ | |||
<!-- --> |
|||
⚫ | |||
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Hoste-Thistlethwaite Knot Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. --> |
|||
<!-- --> |
|||
{{Hoste-Thistlethwaite Knot Page| |
{{Hoste-Thistlethwaite Knot Page| |
||
n = 11 | |
n = 11 | |
||
t = |
t = n | |
||
k = |
k = 185 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,- |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,2,-6,3,-1,4,10,-5,11,6,-9,7,-4,8,-3,9,-2,-10,5,-11,-8/goTop.html | |
||
same_alexander = [[ |
same_alexander = [[10_122]], | |
||
same_jones = |
same_jones = | |
||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
<td width= |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
<tr><td>\</td><td> </td><td>r</td></tr> |
||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width= |
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>χ</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow> </td><td>4</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>1</td><td> </td><td>-5</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>8</td><td bgcolor=yellow>4</td><td> </td><td> </td><td>4</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>10</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td>-4</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>8</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td bgcolor=yellow>8</td><td bgcolor=yellow>10</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>9</td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>7</td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>6</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-4</td></tr> |
||
<tr align=center><td> |
<tr align=center><td>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
</table> | |
||
coloured_jones_2 = | |
coloured_jones_2 = | |
||
Line 44: | Line 51: | ||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, NonAlternating, 185]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[11, |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[11, NonAlternating, 185]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[18, 4, 19, 3], X[16, 5, 17, 6], X[14, 8, 15, 7], |
||
X[ |
X[9, 21, 10, 20], X[4, 12, 5, 11], X[2, 13, 3, 14], X[22, 16, 1, 15], |
||
X[ |
X[12, 18, 13, 17], X[19, 9, 20, 8], X[21, 11, 22, 10]]</nowiki></pre></td></tr> |
||
⚫ | |||
⚫ | |||
-2, -10, 5, -11, -8]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, NonAlternating, 185]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Knot[11, NonAlternating, 185]]</nowiki></pre></td></tr> |
||
⚫ | <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[11, NonAlternating, 185]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:K11n185_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
⚫ | |||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 11 24 2 3 |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[11, |
||
⚫ | |||
⚫ | |||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, NonAlternating, 185]][z]</nowiki></pre></td></tr> |
||
⚫ | |||
⚫ | |||
1 + 2 z - z - 2 z</nowiki></pre></td></tr> |
|||
⚫ | |||
⚫ | |||
⚫ | |||
1 + 2 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 122], Knot[11, NonAlternating, 185]}</nowiki></pre></td></tr> |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
11 |
|||
Knot[11, Alternating, 149]}</nowiki></pre></td></tr> |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
q |
|||
7 8 |
|||
4 q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, NonAlternating, 185]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, NonAlternating, 185]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 12 14 16 18 20 22 |
||
3 q - 2 q + 4 q + q - 2 q + 4 q - 4 q + 2 q - 3 q - |
|||
⚫ | |||
⚫ | |||
⚫ | |||
3 q + 4 q - 2 q - 2 q + 2 q - q</nowiki></pre></td></tr> |
|||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
⚫ | |||
⚫ | |||
4 7 5 3 a 8 6 |
|||
a a a a a a |
|||
2 2 3 3 3 3 3 |
|||
10 z 3 z 2 2 z 7 z 16 z 16 z 15 z 3 |
|||
----- - ---- + 3 a z - -- + ---- + ----- + ----- + ----- + 7 a z - |
|||
4 2 9 7 5 3 a |
|||
a a a a a a |
|||
24 26 28 30 32 34 |
|||
2 q + 2 q - 3 q + 3 q + q - q</nowiki></pre></td></tr> |
|||
⚫ | |||
2 z - ---- + ---- + ----- + ----- - 3 a z + -- - ----- - ----- - |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
|||
-8 4 4 z z 3 z 3 z 2 z 3 z 14 z 9 z |
|||
⚫ | |||
⚫ | |||
⚫ | |||
3 3 3 3 4 4 4 4 4 |
|||
5 z 16 z 12 z z 5 z 5 z 10 z 16 z 6 z |
|||
---- + ----- + ----- + -- - ---- - ---- + ----- + ----- + ---- + |
|||
11 9 7 5 12 10 8 6 4 |
|||
a a a a a a a a a |
|||
5 5 5 5 6 6 6 6 7 |
|||
z 16 z 35 z 18 z 5 z 9 z 24 z 10 z 10 z |
|||
--- - ----- - ----- - ----- + ---- - ---- - ----- - ----- + ----- + |
|||
13 11 9 7 12 10 8 6 11 |
|||
a a a a a a a a a |
|||
7 7 7 8 8 8 9 9 |
|||
14 z 7 z 3 z 9 z 15 z 6 z 3 z 3 z |
|||
----- + ---- + ---- + ---- + --- + --- |
----- + ---- + ---- + ---- + ----- + ---- + ---- + ---- |
||
9 7 5 10 8 6 9 7 |
|||
a a a a a</nowiki></pre></td></tr> |
a a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, NonAlternating, 185]], Vassiliev[3][Knot[11, NonAlternating, 185]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, NonAlternating, 185]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 5 7 7 2 9 2 9 3 11 3 |
||
3 q + q + 5 q t + 2 q t + 8 q t + 5 q t + 8 q t + 8 q t + |
|||
7 4 5 3 3 3 3 2 2 q t t |
|||
q t q t q t q t q t |
|||
11 4 13 4 13 5 15 5 15 6 17 6 |
|||
10 q t + 8 q t + 8 q t + 10 q t + 6 q t + 8 q t + |
|||
17 7 19 7 19 8 21 8 23 9 |
|||
4 q t + 6 q t + q t + 4 q t + q t</nowiki></pre></td></tr> |
|||
</table> }} |
</table> }} |
Revision as of 10:40, 31 August 2005
|
|
(Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
Planar diagram presentation | X6271 X18,4,19,3 X16,5,17,6 X14,8,15,7 X9,21,10,20 X4,12,5,11 X2,13,3,14 X22,16,1,15 X12,18,13,17 X19,9,20,8 X21,11,22,10 |
Gauss code | 1, -7, 2, -6, 3, -1, 4, 10, -5, 11, 6, -9, 7, -4, 8, -3, 9, -2, -10, 5, -11, -8 |
Dowker-Thistlethwaite code | 6 18 16 14 -20 4 2 22 12 -8 -10 |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11n185"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 105, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_122,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11n185"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_122,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (2, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of K11n185. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|