|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 41: |
Line 44: |
|
coloured_jones_3 = <math>q^6-2 q^5+2 q^3+3 q^2-7 q-4+10 q^{-1} +13 q^{-2} -19 q^{-3} -21 q^{-4} +21 q^{-5} +43 q^{-6} -26 q^{-7} -63 q^{-8} +16 q^{-9} +94 q^{-10} -3 q^{-11} -116 q^{-12} -27 q^{-13} +142 q^{-14} +56 q^{-15} -149 q^{-16} -103 q^{-17} +163 q^{-18} +132 q^{-19} -149 q^{-20} -178 q^{-21} +148 q^{-22} +201 q^{-23} -126 q^{-24} -231 q^{-25} +113 q^{-26} +237 q^{-27} -87 q^{-28} -240 q^{-29} +64 q^{-30} +227 q^{-31} -43 q^{-32} -197 q^{-33} +18 q^{-34} +168 q^{-35} -9 q^{-36} -122 q^{-37} -6 q^{-38} +92 q^{-39} +3 q^{-40} -57 q^{-41} -5 q^{-42} +37 q^{-43} -21 q^{-45} +14 q^{-47} -2 q^{-48} -8 q^{-49} +2 q^{-50} +3 q^{-51} + q^{-52} -3 q^{-53} + q^{-54} </math> | |
|
coloured_jones_3 = <math>q^6-2 q^5+2 q^3+3 q^2-7 q-4+10 q^{-1} +13 q^{-2} -19 q^{-3} -21 q^{-4} +21 q^{-5} +43 q^{-6} -26 q^{-7} -63 q^{-8} +16 q^{-9} +94 q^{-10} -3 q^{-11} -116 q^{-12} -27 q^{-13} +142 q^{-14} +56 q^{-15} -149 q^{-16} -103 q^{-17} +163 q^{-18} +132 q^{-19} -149 q^{-20} -178 q^{-21} +148 q^{-22} +201 q^{-23} -126 q^{-24} -231 q^{-25} +113 q^{-26} +237 q^{-27} -87 q^{-28} -240 q^{-29} +64 q^{-30} +227 q^{-31} -43 q^{-32} -197 q^{-33} +18 q^{-34} +168 q^{-35} -9 q^{-36} -122 q^{-37} -6 q^{-38} +92 q^{-39} +3 q^{-40} -57 q^{-41} -5 q^{-42} +37 q^{-43} -21 q^{-45} +14 q^{-47} -2 q^{-48} -8 q^{-49} +2 q^{-50} +3 q^{-51} + q^{-52} -3 q^{-53} + q^{-54} </math> | |
|
coloured_jones_4 = <math>q^{12}-2 q^{11}+2 q^9-q^8+4 q^7-9 q^6+10 q^4-2 q^3+13 q^2-31 q-10+30 q^{-1} +10 q^{-2} +43 q^{-3} -77 q^{-4} -54 q^{-5} +42 q^{-6} +42 q^{-7} +139 q^{-8} -115 q^{-9} -146 q^{-10} -15 q^{-11} +45 q^{-12} +319 q^{-13} -66 q^{-14} -217 q^{-15} -165 q^{-16} -82 q^{-17} +501 q^{-18} +98 q^{-19} -148 q^{-20} -319 q^{-21} -369 q^{-22} +554 q^{-23} +292 q^{-24} +96 q^{-25} -360 q^{-26} -723 q^{-27} +442 q^{-28} +404 q^{-29} +424 q^{-30} -259 q^{-31} -1020 q^{-32} +230 q^{-33} +412 q^{-34} +730 q^{-35} -92 q^{-36} -1210 q^{-37} +9 q^{-38} +356 q^{-39} +951 q^{-40} +82 q^{-41} -1272 q^{-42} -188 q^{-43} +245 q^{-44} +1055 q^{-45} +254 q^{-46} -1178 q^{-47} -325 q^{-48} +70 q^{-49} +984 q^{-50} +395 q^{-51} -908 q^{-52} -345 q^{-53} -127 q^{-54} +730 q^{-55} +427 q^{-56} -545 q^{-57} -226 q^{-58} -239 q^{-59} +398 q^{-60} +323 q^{-61} -247 q^{-62} -57 q^{-63} -213 q^{-64} +149 q^{-65} +160 q^{-66} -100 q^{-67} +48 q^{-68} -116 q^{-69} +38 q^{-70} +48 q^{-71} -53 q^{-72} +57 q^{-73} -40 q^{-74} +14 q^{-75} +8 q^{-76} -34 q^{-77} +28 q^{-78} -9 q^{-79} +8 q^{-80} +2 q^{-81} -14 q^{-82} +7 q^{-83} -2 q^{-84} +3 q^{-85} + q^{-86} -3 q^{-87} + q^{-88} </math> | |
|
coloured_jones_4 = <math>q^{12}-2 q^{11}+2 q^9-q^8+4 q^7-9 q^6+10 q^4-2 q^3+13 q^2-31 q-10+30 q^{-1} +10 q^{-2} +43 q^{-3} -77 q^{-4} -54 q^{-5} +42 q^{-6} +42 q^{-7} +139 q^{-8} -115 q^{-9} -146 q^{-10} -15 q^{-11} +45 q^{-12} +319 q^{-13} -66 q^{-14} -217 q^{-15} -165 q^{-16} -82 q^{-17} +501 q^{-18} +98 q^{-19} -148 q^{-20} -319 q^{-21} -369 q^{-22} +554 q^{-23} +292 q^{-24} +96 q^{-25} -360 q^{-26} -723 q^{-27} +442 q^{-28} +404 q^{-29} +424 q^{-30} -259 q^{-31} -1020 q^{-32} +230 q^{-33} +412 q^{-34} +730 q^{-35} -92 q^{-36} -1210 q^{-37} +9 q^{-38} +356 q^{-39} +951 q^{-40} +82 q^{-41} -1272 q^{-42} -188 q^{-43} +245 q^{-44} +1055 q^{-45} +254 q^{-46} -1178 q^{-47} -325 q^{-48} +70 q^{-49} +984 q^{-50} +395 q^{-51} -908 q^{-52} -345 q^{-53} -127 q^{-54} +730 q^{-55} +427 q^{-56} -545 q^{-57} -226 q^{-58} -239 q^{-59} +398 q^{-60} +323 q^{-61} -247 q^{-62} -57 q^{-63} -213 q^{-64} +149 q^{-65} +160 q^{-66} -100 q^{-67} +48 q^{-68} -116 q^{-69} +38 q^{-70} +48 q^{-71} -53 q^{-72} +57 q^{-73} -40 q^{-74} +14 q^{-75} +8 q^{-76} -34 q^{-77} +28 q^{-78} -9 q^{-79} +8 q^{-80} +2 q^{-81} -14 q^{-82} +7 q^{-83} -2 q^{-84} +3 q^{-85} + q^{-86} -3 q^{-87} + q^{-88} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 50: |
Line 53: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 14]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 14]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
Line 70: |
Line 73: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 14]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_14_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 14]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_14_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 14]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 14]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 14]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 14]][t]</nowiki></pre></td></tr> |