10 76: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
| Line 41: | Line 44: | ||
coloured_jones_3 = <math>q^{54}-3 q^{53}+2 q^{52}+3 q^{51}-q^{50}-10 q^{49}+3 q^{48}+21 q^{47}-5 q^{46}-39 q^{45}+6 q^{44}+64 q^{43}+3 q^{42}-107 q^{41}-13 q^{40}+150 q^{39}+40 q^{38}-199 q^{37}-73 q^{36}+241 q^{35}+114 q^{34}-272 q^{33}-157 q^{32}+292 q^{31}+189 q^{30}-286 q^{29}-226 q^{28}+277 q^{27}+239 q^{26}-240 q^{25}-259 q^{24}+210 q^{23}+252 q^{22}-156 q^{21}-248 q^{20}+109 q^{19}+228 q^{18}-64 q^{17}-194 q^{16}+18 q^{15}+162 q^{14}+5 q^{13}-112 q^{12}-30 q^{11}+83 q^{10}+23 q^9-39 q^8-31 q^7+29 q^6+12 q^5-7 q^4-13 q^3+8 q^2+2 q-4 q^{-1} +3 q^{-2} - q^{-5} + q^{-6} </math> | |
coloured_jones_3 = <math>q^{54}-3 q^{53}+2 q^{52}+3 q^{51}-q^{50}-10 q^{49}+3 q^{48}+21 q^{47}-5 q^{46}-39 q^{45}+6 q^{44}+64 q^{43}+3 q^{42}-107 q^{41}-13 q^{40}+150 q^{39}+40 q^{38}-199 q^{37}-73 q^{36}+241 q^{35}+114 q^{34}-272 q^{33}-157 q^{32}+292 q^{31}+189 q^{30}-286 q^{29}-226 q^{28}+277 q^{27}+239 q^{26}-240 q^{25}-259 q^{24}+210 q^{23}+252 q^{22}-156 q^{21}-248 q^{20}+109 q^{19}+228 q^{18}-64 q^{17}-194 q^{16}+18 q^{15}+162 q^{14}+5 q^{13}-112 q^{12}-30 q^{11}+83 q^{10}+23 q^9-39 q^8-31 q^7+29 q^6+12 q^5-7 q^4-13 q^3+8 q^2+2 q-4 q^{-1} +3 q^{-2} - q^{-5} + q^{-6} </math> | |
||
coloured_jones_4 = <math>q^{88}-3 q^{87}+2 q^{86}+3 q^{85}-5 q^{84}+5 q^{83}-12 q^{82}+9 q^{81}+15 q^{80}-20 q^{79}+13 q^{78}-42 q^{77}+29 q^{76}+59 q^{75}-51 q^{74}+6 q^{73}-121 q^{72}+81 q^{71}+183 q^{70}-73 q^{69}-52 q^{68}-333 q^{67}+140 q^{66}+461 q^{65}+18 q^{64}-150 q^{63}-756 q^{62}+94 q^{61}+847 q^{60}+315 q^{59}-159 q^{58}-1309 q^{57}-150 q^{56}+1158 q^{55}+738 q^{54}+10 q^{53}-1762 q^{52}-506 q^{51}+1238 q^{50}+1084 q^{49}+306 q^{48}-1951 q^{47}-809 q^{46}+1093 q^{45}+1230 q^{44}+604 q^{43}-1861 q^{42}-982 q^{41}+795 q^{40}+1189 q^{39}+850 q^{38}-1557 q^{37}-1040 q^{36}+410 q^{35}+1004 q^{34}+1021 q^{33}-1094 q^{32}-976 q^{31}-3 q^{30}+692 q^{29}+1062 q^{28}-562 q^{27}-756 q^{26}-311 q^{25}+301 q^{24}+895 q^{23}-119 q^{22}-412 q^{21}-387 q^{20}-25 q^{19}+561 q^{18}+88 q^{17}-102 q^{16}-255 q^{15}-151 q^{14}+238 q^{13}+83 q^{12}+40 q^{11}-92 q^{10}-113 q^9+67 q^8+19 q^7+43 q^6-13 q^5-45 q^4+18 q^3-8 q^2+16 q+2-13 q^{-1} +9 q^{-2} -6 q^{-3} +3 q^{-4} + q^{-5} -4 q^{-6} +4 q^{-7} - q^{-8} - q^{-11} + q^{-12} </math> | |
coloured_jones_4 = <math>q^{88}-3 q^{87}+2 q^{86}+3 q^{85}-5 q^{84}+5 q^{83}-12 q^{82}+9 q^{81}+15 q^{80}-20 q^{79}+13 q^{78}-42 q^{77}+29 q^{76}+59 q^{75}-51 q^{74}+6 q^{73}-121 q^{72}+81 q^{71}+183 q^{70}-73 q^{69}-52 q^{68}-333 q^{67}+140 q^{66}+461 q^{65}+18 q^{64}-150 q^{63}-756 q^{62}+94 q^{61}+847 q^{60}+315 q^{59}-159 q^{58}-1309 q^{57}-150 q^{56}+1158 q^{55}+738 q^{54}+10 q^{53}-1762 q^{52}-506 q^{51}+1238 q^{50}+1084 q^{49}+306 q^{48}-1951 q^{47}-809 q^{46}+1093 q^{45}+1230 q^{44}+604 q^{43}-1861 q^{42}-982 q^{41}+795 q^{40}+1189 q^{39}+850 q^{38}-1557 q^{37}-1040 q^{36}+410 q^{35}+1004 q^{34}+1021 q^{33}-1094 q^{32}-976 q^{31}-3 q^{30}+692 q^{29}+1062 q^{28}-562 q^{27}-756 q^{26}-311 q^{25}+301 q^{24}+895 q^{23}-119 q^{22}-412 q^{21}-387 q^{20}-25 q^{19}+561 q^{18}+88 q^{17}-102 q^{16}-255 q^{15}-151 q^{14}+238 q^{13}+83 q^{12}+40 q^{11}-92 q^{10}-113 q^9+67 q^8+19 q^7+43 q^6-13 q^5-45 q^4+18 q^3-8 q^2+16 q+2-13 q^{-1} +9 q^{-2} -6 q^{-3} +3 q^{-4} + q^{-5} -4 q^{-6} +4 q^{-7} - q^{-8} - q^{-11} + q^{-12} </math> | |
||
coloured_jones_5 = | |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_6 = | |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_7 = | |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
| Line 50: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 76]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 76]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[14, 10, 15, 9], X[12, 3, 13, 4], X[2, 13, 3, 14], |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[14, 10, 15, 9], X[12, 3, 13, 4], X[2, 13, 3, 14], |
||
| Line 70: | Line 73: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 76]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_76_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 76]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_76_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 76]]&) /@ { |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 76]]&) /@ { |
||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, {2, 3}, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 76]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 76]][t]</nowiki></pre></td></tr> |
||
Revision as of 17:53, 31 August 2005
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 76's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X14,10,15,9 X12,3,13,4 X2,13,3,14 X18,6,19,5 X20,8,1,7 X6,20,7,19 X8,18,9,17 X16,12,17,11 X10,16,11,15 |
| Gauss code | 1, -4, 3, -1, 5, -7, 6, -8, 2, -10, 9, -3, 4, -2, 10, -9, 8, -5, 7, -6 |
| Dowker-Thistlethwaite code | 4 12 18 20 14 16 2 10 8 6 |
| Conway Notation | [3,3,2++] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{5, 12}, {6, 3}, {1, 5}, {4, 2}, {3, 7}, {2, 6}, {10, 4}, {9, 11}, {8, 10}, {7, 9}, {12, 8}, {11, 1}] |
[edit Notes on presentations of 10 76]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 76"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X14,10,15,9 X12,3,13,4 X2,13,3,14 X18,6,19,5 X20,8,1,7 X6,20,7,19 X8,18,9,17 X16,12,17,11 X10,16,11,15 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, 5, -7, 6, -8, 2, -10, 9, -3, 4, -2, 10, -9, 8, -5, 7, -6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 18 20 14 16 2 10 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3,3,2++] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{5, 12}, {6, 3}, {1, 5}, {4, 2}, {3, 7}, {2, 6}, {10, 4}, {9, 11}, {8, 10}, {7, 9}, {12, 8}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 76"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 57, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 76"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-2, -6) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 76. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-3 q^{27}+2 q^{26}+7 q^{25}-16 q^{24}+5 q^{23}+26 q^{22}-40 q^{21}+3 q^{20}+55 q^{19}-62 q^{18}-5 q^{17}+77 q^{16}-68 q^{15}-16 q^{14}+81 q^{13}-55 q^{12}-24 q^{11}+65 q^{10}-32 q^9-24 q^8+38 q^7-11 q^6-15 q^5+15 q^4-2 q^3-5 q^2+4 q- q^{-1} + q^{-2} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-3 q^{53}+2 q^{52}+3 q^{51}-q^{50}-10 q^{49}+3 q^{48}+21 q^{47}-5 q^{46}-39 q^{45}+6 q^{44}+64 q^{43}+3 q^{42}-107 q^{41}-13 q^{40}+150 q^{39}+40 q^{38}-199 q^{37}-73 q^{36}+241 q^{35}+114 q^{34}-272 q^{33}-157 q^{32}+292 q^{31}+189 q^{30}-286 q^{29}-226 q^{28}+277 q^{27}+239 q^{26}-240 q^{25}-259 q^{24}+210 q^{23}+252 q^{22}-156 q^{21}-248 q^{20}+109 q^{19}+228 q^{18}-64 q^{17}-194 q^{16}+18 q^{15}+162 q^{14}+5 q^{13}-112 q^{12}-30 q^{11}+83 q^{10}+23 q^9-39 q^8-31 q^7+29 q^6+12 q^5-7 q^4-13 q^3+8 q^2+2 q-4 q^{-1} +3 q^{-2} - q^{-5} + q^{-6} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{88}-3 q^{87}+2 q^{86}+3 q^{85}-5 q^{84}+5 q^{83}-12 q^{82}+9 q^{81}+15 q^{80}-20 q^{79}+13 q^{78}-42 q^{77}+29 q^{76}+59 q^{75}-51 q^{74}+6 q^{73}-121 q^{72}+81 q^{71}+183 q^{70}-73 q^{69}-52 q^{68}-333 q^{67}+140 q^{66}+461 q^{65}+18 q^{64}-150 q^{63}-756 q^{62}+94 q^{61}+847 q^{60}+315 q^{59}-159 q^{58}-1309 q^{57}-150 q^{56}+1158 q^{55}+738 q^{54}+10 q^{53}-1762 q^{52}-506 q^{51}+1238 q^{50}+1084 q^{49}+306 q^{48}-1951 q^{47}-809 q^{46}+1093 q^{45}+1230 q^{44}+604 q^{43}-1861 q^{42}-982 q^{41}+795 q^{40}+1189 q^{39}+850 q^{38}-1557 q^{37}-1040 q^{36}+410 q^{35}+1004 q^{34}+1021 q^{33}-1094 q^{32}-976 q^{31}-3 q^{30}+692 q^{29}+1062 q^{28}-562 q^{27}-756 q^{26}-311 q^{25}+301 q^{24}+895 q^{23}-119 q^{22}-412 q^{21}-387 q^{20}-25 q^{19}+561 q^{18}+88 q^{17}-102 q^{16}-255 q^{15}-151 q^{14}+238 q^{13}+83 q^{12}+40 q^{11}-92 q^{10}-113 q^9+67 q^8+19 q^7+43 q^6-13 q^5-45 q^4+18 q^3-8 q^2+16 q+2-13 q^{-1} +9 q^{-2} -6 q^{-3} +3 q^{-4} + q^{-5} -4 q^{-6} +4 q^{-7} - q^{-8} - q^{-11} + q^{-12} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
| 7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{NotAvailable}(q)} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




