10 85: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
| Line 52: | Line 52: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 85]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 6, 17, 5], X[18, 11, 19, 12], X[14, 7, 15, 8], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 85]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[16, 6, 17, 5], X[18, 11, 19, 12], X[14, 7, 15, 8], |
|||
X[8, 3, 9, 4], X[4, 9, 5, 10], X[20, 13, 1, 14], X[10, 17, 11, 18], |
X[8, 3, 9, 4], X[4, 9, 5, 10], X[20, 13, 1, 14], X[10, 17, 11, 18], |
||
X[12, 19, 13, 20], X[2, 16, 3, 15]]</nowiki></ |
X[12, 19, 13, 20], X[2, 16, 3, 15]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 85]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 5, -6, 2, -1, 4, -5, 6, -8, 3, -9, 7, -4, 10, -2, 8, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 85]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 5, -6, 2, -1, 4, -5, 6, -8, 3, -9, 7, -4, 10, -2, 8, |
|||
-3, 9, -7]</nowiki></ |
-3, 9, -7]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 85]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 16, 14, 4, 18, 20, 2, 10, 12]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 85]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 16, 14, 4, 18, 20, 2, 10, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 85]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_85_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 85]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, 2, -1, -1, 2, -1, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 85]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 85]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_85_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 85]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus, |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki></ |
}</nowiki></code></td></tr> |
||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 4, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 85]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 4 8 10 2 3 4 |
|||
11 + t - -- + -- - -- - 10 t + 8 t - 4 t + t |
11 + t - -- + -- - -- - 10 t + 8 t - 4 t + t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 85]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 2 z + 4 z + 4 z + z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 85]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 85]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 |
|||
1 + 2 z + 4 z + 4 z + z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 85]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9 3 5 7 9 9 8 7 4 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 85]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 85]], KnotSignature[Knot[10, 85]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{57, -4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 85]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -9 3 5 7 9 9 8 7 4 |
|||
3 - q + -- - -- + -- - -- + -- - -- + -- - - - q |
3 - q + -- - -- + -- - -- + -- - -- + -- - - - q |
||
8 7 6 5 4 3 2 q |
8 7 6 5 4 3 2 q |
||
q q q q q q q</nowiki></ |
q q q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 85]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 85]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 85]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -26 -24 -22 -20 -16 -14 3 2 2 2 2 |
|||
1 - q + q - q + q - q + q - --- + --- + -- + -- - q |
1 - q + q - q + q - q + q - --- + --- + -- + -- - q |
||
12 10 6 4 |
12 10 6 4 |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 85]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 4 2 6 2 2 4 4 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 85]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 2 2 4 2 6 2 2 4 4 4 |
|||
a + a - a - 3 a z + 9 a z - 4 a z - 4 a z + 12 a z - |
a + a - a - 3 a z + 9 a z - 4 a z - 4 a z + 12 a z - |
||
6 4 2 6 4 6 6 6 4 8 |
6 4 2 6 4 6 6 6 4 8 |
||
4 a z - a z + 6 a z - a z + a z</nowiki></ |
4 a z - a z + 6 a z - a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 85]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 9 2 2 4 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 85]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 3 5 9 2 2 4 2 |
|||
-a + a + a - a z - 2 a z - 2 a z + a z - 7 a z - 14 a z - |
-a + a + a - a z - 2 a z - 2 a z + a z - 7 a z - 14 a z - |
||
| Line 124: | Line 210: | ||
2 8 4 8 6 8 3 9 5 9 |
2 8 4 8 6 8 3 9 5 9 |
||
3 a z + 8 a z + 5 a z + 2 a z + 2 a z</nowiki></ |
3 a z + 8 a z + 5 a z + 2 a z + 2 a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 85]], Vassiliev[3][Knot[10, 85]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, -3}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 85]], Vassiliev[3][Knot[10, 85]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, -3}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 85]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 5 1 2 1 3 2 4 |
|||
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + |
||
5 3 19 7 17 6 15 6 15 5 13 5 13 4 |
5 3 19 7 17 6 15 6 15 5 13 5 13 4 |
||
| Line 141: | Line 237: | ||
t 2 3 3 |
t 2 3 3 |
||
-- + 2 q t + q t |
-- + 2 q t + q t |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 85], 2][q]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -25 3 2 5 12 8 8 24 21 9 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 85], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -25 3 2 5 12 8 8 24 21 9 |
|||
-11 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - |
-11 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - |
||
24 23 22 21 20 19 18 17 16 |
24 23 22 21 20 19 18 17 16 |
||
| Line 156: | Line 257: | ||
-- - -- + -- - 8 q + 10 q - q - 3 q + q |
-- - -- + -- - 8 q + 10 q - q - 3 q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> }} |
|||
Latest revision as of 17:02, 1 September 2005
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 85's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X6271 X16,6,17,5 X18,11,19,12 X14,7,15,8 X8394 X4,9,5,10 X20,13,1,14 X10,17,11,18 X12,19,13,20 X2,16,3,15 |
| Gauss code | 1, -10, 5, -6, 2, -1, 4, -5, 6, -8, 3, -9, 7, -4, 10, -2, 8, -3, 9, -7 |
| Dowker-Thistlethwaite code | 6 8 16 14 4 18 20 2 10 12 |
| Conway Notation | [.4.20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
|
![]() [{3, 12}, {2, 6}, {8, 13}, {9, 7}, {10, 8}, {11, 9}, {4, 10}, {6, 11}, {5, 3}, {12, 4}, {1, 5}, {13, 2}, {7, 1}] |
[edit Notes on presentations of 10 85]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 85"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X16,6,17,5 X18,11,19,12 X14,7,15,8 X8394 X4,9,5,10 X20,13,1,14 X10,17,11,18 X12,19,13,20 X2,16,3,15 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 5, -6, 2, -1, 4, -5, 6, -8, 3, -9, 7, -4, 10, -2, 8, -3, 9, -7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 16 14 4 18 20 2 10 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.4.20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(3,\{-1,-1,-1,-1,2,-1,-1,2,-1,2\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 12}, {2, 6}, {8, 13}, {9, 7}, {10, 8}, {11, 9}, {4, 10}, {6, 11}, {5, 3}, {12, 4}, {1, 5}, {13, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-4 t^3+8 t^2-10 t+11-10 t^{-1} +8 t^{-2} -4 t^{-3} + t^{-4} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+4 z^6+4 z^4+2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 57, -4 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q+3-4 q^{-1} +7 q^{-2} -8 q^{-3} +9 q^{-4} -9 q^{-5} +7 q^{-6} -5 q^{-7} +3 q^{-8} - q^{-9} } |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{11}+3 z^4 a^{10}-z^2 a^{10}+5 z^5 a^9-4 z^3 a^9+z a^9+6 z^6 a^8-7 z^4 a^8+z^2 a^8+6 z^7 a^7-10 z^5 a^7+2 z^3 a^7+5 z^8 a^6-12 z^6 a^6+8 z^4 a^6-5 z^2 a^6+a^6+2 z^9 a^5-15 z^5 a^5+14 z^3 a^5-2 z a^5+8 z^8 a^4-32 z^6 a^4+37 z^4 a^4-14 z^2 a^4+a^4+2 z^9 a^3-5 z^7 a^3-4 z^5 a^3+11 z^3 a^3-2 z a^3+3 z^8 a^2-14 z^6 a^2+19 z^4 a^2-7 z^2 a^2-a^2+z^7 a-4 z^5 a+4 z^3 a-z a} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{26}+q^{24}-q^{22}+q^{20}-q^{16}+q^{14}-3 q^{12}+2 q^{10}+2 q^6+2 q^4+1- q^{-2} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{148}-2 q^{146}+3 q^{144}-4 q^{142}+2 q^{140}-q^{138}-2 q^{136}+8 q^{134}-11 q^{132}+14 q^{130}-12 q^{128}+6 q^{126}+2 q^{124}-11 q^{122}+20 q^{120}-24 q^{118}+21 q^{116}-14 q^{114}+q^{112}+9 q^{110}-16 q^{108}+22 q^{106}-24 q^{104}+21 q^{102}-17 q^{100}+3 q^{98}+12 q^{96}-26 q^{94}+33 q^{92}-29 q^{90}+14 q^{88}+9 q^{86}-28 q^{84}+33 q^{82}-18 q^{80}-7 q^{78}+34 q^{76}-45 q^{74}+30 q^{72}+5 q^{70}-40 q^{68}+64 q^{66}-65 q^{64}+40 q^{62}-2 q^{60}-38 q^{58}+62 q^{56}-69 q^{54}+51 q^{52}-22 q^{50}-13 q^{48}+37 q^{46}-47 q^{44}+43 q^{42}-20 q^{40}-10 q^{38}+33 q^{36}-39 q^{34}+27 q^{32}+7 q^{30}-38 q^{28}+60 q^{26}-49 q^{24}+21 q^{22}+22 q^{20}-54 q^{18}+68 q^{16}-53 q^{14}+23 q^{12}+9 q^{10}-34 q^8+42 q^6-33 q^4+18 q^2-2-8 q^{-2} +9 q^{-4} -9 q^{-6} +5 q^{-8} -2 q^{-10} + q^{-12} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{19}+2 q^{17}-2 q^{15}+2 q^{13}-2 q^{11}+q^7-q^5+3 q^3-q+2 q^{-1} - q^{-3} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}-2 q^{50}+4 q^{46}-5 q^{44}+q^{42}+4 q^{40}-8 q^{38}+5 q^{36}+6 q^{34}-10 q^{32}+q^{30}+9 q^{28}-5 q^{26}-6 q^{24}+6 q^{22}+3 q^{20}-8 q^{18}-q^{16}+9 q^{14}-5 q^{12}-6 q^{10}+11 q^8-10 q^4+9 q^2+6-9 q^{-2} + q^{-4} +6 q^{-6} -3 q^{-8} -2 q^{-10} + q^{-12} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{99}+2 q^{97}-2 q^{93}-q^{91}+3 q^{89}+4 q^{87}-5 q^{85}-4 q^{83}-q^{81}+5 q^{79}+8 q^{77}-16 q^{73}-12 q^{71}+24 q^{69}+26 q^{67}-21 q^{65}-41 q^{63}+8 q^{61}+46 q^{59}+11 q^{57}-39 q^{55}-28 q^{53}+19 q^{51}+40 q^{49}+4 q^{47}-41 q^{45}-19 q^{43}+33 q^{41}+32 q^{39}-28 q^{37}-35 q^{35}+18 q^{33}+37 q^{31}-15 q^{29}-37 q^{27}+6 q^{25}+40 q^{23}+5 q^{21}-40 q^{19}-20 q^{17}+35 q^{15}+35 q^{13}-20 q^{11}-44 q^9-q^7+47 q^5+20 q^3-31 q-34 q^{-1} +16 q^{-3} +36 q^{-5} +3 q^{-7} -27 q^{-9} -13 q^{-11} +13 q^{-13} +15 q^{-15} -4 q^{-17} -9 q^{-19} -2 q^{-21} +3 q^{-23} +2 q^{-25} - q^{-27} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{160}-2 q^{158}+2 q^{154}-q^{152}+3 q^{150}-8 q^{148}+8 q^{144}+4 q^{142}+10 q^{140}-28 q^{138}-17 q^{136}+13 q^{134}+33 q^{132}+46 q^{130}-49 q^{128}-78 q^{126}-25 q^{124}+81 q^{122}+148 q^{120}-24 q^{118}-178 q^{116}-152 q^{114}+79 q^{112}+297 q^{110}+122 q^{108}-201 q^{106}-333 q^{104}-80 q^{102}+323 q^{100}+318 q^{98}-12 q^{96}-337 q^{94}-295 q^{92}+91 q^{90}+308 q^{88}+225 q^{86}-81 q^{84}-289 q^{82}-169 q^{80}+65 q^{78}+247 q^{76}+167 q^{74}-99 q^{72}-226 q^{70}-118 q^{68}+137 q^{66}+218 q^{64}+19 q^{62}-188 q^{60}-146 q^{58}+95 q^{56}+211 q^{54}+34 q^{52}-206 q^{50}-166 q^{48}+91 q^{46}+252 q^{44}+99 q^{42}-208 q^{40}-246 q^{38}-12 q^{36}+250 q^{34}+234 q^{32}-74 q^{30}-254 q^{28}-189 q^{26}+84 q^{24}+274 q^{22}+140 q^{20}-79 q^{18}-245 q^{16}-152 q^{14}+101 q^{12}+201 q^{10}+156 q^8-72 q^6-207 q^4-120 q^2+32+191 q^{-2} +124 q^{-4} -39 q^{-6} -132 q^{-8} -128 q^{-10} +33 q^{-12} +109 q^{-14} +83 q^{-16} + q^{-18} -90 q^{-20} -54 q^{-22} +44 q^{-26} +45 q^{-28} -7 q^{-30} -20 q^{-32} -20 q^{-34} -3 q^{-36} +12 q^{-38} +5 q^{-40} +2 q^{-42} -3 q^{-44} -2 q^{-46} + q^{-48} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{235}+2 q^{233}-2 q^{229}+q^{227}-q^{225}+2 q^{223}+4 q^{221}-3 q^{219}-11 q^{217}-4 q^{215}+9 q^{213}+21 q^{211}+18 q^{209}-17 q^{207}-51 q^{205}-44 q^{203}+28 q^{201}+98 q^{199}+84 q^{197}-22 q^{195}-162 q^{193}-174 q^{191}+19 q^{189}+265 q^{187}+288 q^{185}+2 q^{183}-386 q^{181}-488 q^{179}-66 q^{177}+569 q^{175}+775 q^{173}+193 q^{171}-752 q^{169}-1154 q^{167}-475 q^{165}+857 q^{163}+1619 q^{161}+928 q^{159}-785 q^{157}-2007 q^{155}-1521 q^{153}+399 q^{151}+2165 q^{149}+2143 q^{147}+253 q^{145}-1932 q^{143}-2546 q^{141}-1047 q^{139}+1276 q^{137}+2531 q^{135}+1745 q^{133}-357 q^{131}-2058 q^{129}-2080 q^{127}-558 q^{125}+1227 q^{123}+1975 q^{121}+1235 q^{119}-325 q^{117}-1519 q^{115}-1513 q^{113}-399 q^{111}+914 q^{109}+1450 q^{107}+818 q^{105}-423 q^{103}-1220 q^{101}-910 q^{99}+164 q^{97}+985 q^{95}+831 q^{93}-128 q^{91}-927 q^{89}-727 q^{87}+260 q^{85}+1010 q^{83}+736 q^{81}-370 q^{79}-1229 q^{77}-907 q^{75}+388 q^{73}+1447 q^{71}+1210 q^{69}-207 q^{67}-1564 q^{65}-1578 q^{63}-155 q^{61}+1483 q^{59}+1896 q^{57}+664 q^{55}-1165 q^{53}-2042 q^{51}-1220 q^{49}+603 q^{47}+1928 q^{45}+1677 q^{43}+95 q^{41}-1500 q^{39}-1879 q^{37}-811 q^{35}+804 q^{33}+1735 q^{31}+1340 q^{29}-3 q^{27}-1218 q^{25}-1496 q^{23}-730 q^{21}+473 q^{19}+1260 q^{17}+1136 q^{15}+277 q^{13}-665 q^{11}-1117 q^9-817 q^7-14 q^5+728 q^3+944 q+553 q^{-1} -149 q^{-3} -708 q^{-5} -767 q^{-7} -339 q^{-9} +263 q^{-11} +643 q^{-13} +568 q^{-15} +157 q^{-17} -309 q^{-19} -522 q^{-21} -378 q^{-23} -11 q^{-25} +294 q^{-27} +362 q^{-29} +207 q^{-31} -55 q^{-33} -231 q^{-35} -221 q^{-37} -78 q^{-39} +68 q^{-41} +139 q^{-43} +113 q^{-45} +17 q^{-47} -55 q^{-49} -68 q^{-51} -38 q^{-53} +26 q^{-57} +28 q^{-59} +8 q^{-61} -5 q^{-63} -8 q^{-65} -5 q^{-67} -2 q^{-69} +3 q^{-71} +2 q^{-73} - q^{-75} } |
| 6 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{26}+q^{24}-q^{22}+q^{20}-q^{16}+q^{14}-3 q^{12}+2 q^{10}+2 q^6+2 q^4+1- q^{-2} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{76}-4 q^{74}+8 q^{72}-12 q^{70}+20 q^{68}-32 q^{66}+42 q^{64}-50 q^{62}+60 q^{60}-72 q^{58}+74 q^{56}-68 q^{54}+70 q^{52}-72 q^{50}+72 q^{48}-76 q^{46}+82 q^{44}-86 q^{42}+70 q^{40}-40 q^{38}-10 q^{36}+84 q^{34}-158 q^{32}+230 q^{30}-287 q^{28}+326 q^{26}-338 q^{24}+310 q^{22}-271 q^{20}+202 q^{18}-120 q^{16}+24 q^{14}+69 q^{12}-136 q^{10}+200 q^8-216 q^6+213 q^4-178 q^2+140-96 q^{-2} +54 q^{-4} -30 q^{-6} +12 q^{-8} -4 q^{-10} + q^{-12} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}-q^{64}+q^{60}-q^{58}+q^{56}-2 q^{54}-q^{52}+2 q^{48}-3 q^{44}+3 q^{42}+4 q^{40}-2 q^{38}-6 q^{36}+5 q^{34}+2 q^{32}-3 q^{30}+q^{26}-2 q^{24}-5 q^{22}+q^{20}-q^{18}-3 q^{16}+3 q^{14}+6 q^{12}-q^{10}+q^8+7 q^6+4 q^4-3 q^2-1+2 q^{-2} -3 q^{-6} - q^{-8} + q^{-10} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{62}-2 q^{60}-q^{58}+5 q^{56}-3 q^{54}-4 q^{52}+8 q^{50}-q^{48}-7 q^{46}+7 q^{44}+q^{42}-9 q^{40}+4 q^{38}+2 q^{36}-6 q^{34}+q^{32}+3 q^{30}+2 q^{28}-4 q^{26}+5 q^{22}-8 q^{20}-2 q^{18}+7 q^{16}-3 q^{14}+2 q^{12}+9 q^{10}-2 q^8+5 q^4-5 q^2+1+ q^{-2} -2 q^{-4} + q^{-6} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{33}+q^{31}-2 q^{29}+2 q^{27}-2 q^{25}+2 q^{23}-q^{21}-q^{17}-q^{15}+q^{13}+4 q^9+3 q^5-q^3+q- q^{-1} } |
| 1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{100}-4 q^{98}+6 q^{96}-2 q^{94}-7 q^{92}+17 q^{90}-20 q^{88}+7 q^{86}+16 q^{84}-31 q^{82}+29 q^{80}-13 q^{78}-12 q^{76}+27 q^{74}-24 q^{72}+16 q^{70}-3 q^{68}-4 q^{66}-2 q^{64}+21 q^{62}-41 q^{60}+42 q^{58}-19 q^{56}-32 q^{54}+83 q^{52}-117 q^{50}+117 q^{48}-89 q^{46}+44 q^{44}+9 q^{42}-53 q^{40}+96 q^{38}-114 q^{36}+120 q^{34}-109 q^{32}+76 q^{30}-56 q^{28}+12 q^{26}+7 q^{24}-57 q^{22}+93 q^{20}-110 q^{18}+126 q^{16}-84 q^{14}+59 q^{12}+10 q^{10}-41 q^8+75 q^6-75 q^4+49 q^2-24-6 q^{-2} +15 q^{-4} -16 q^{-6} +10 q^{-8} -4 q^{-10} + q^{-12} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{76}-q^{74}-2 q^{72}+3 q^{70}+q^{68}-6 q^{66}+q^{64}+8 q^{62}-2 q^{60}-4 q^{58}+7 q^{56}+3 q^{54}-7 q^{52}-4 q^{50}+4 q^{48}-7 q^{46}-8 q^{44}+6 q^{42}+2 q^{40}-7 q^{38}+6 q^{36}+9 q^{34}-8 q^{32}-3 q^{30}+4 q^{28}-q^{26}-6 q^{24}+2 q^{22}+6 q^{20}+3 q^{18}+2 q^{16}+6 q^{14}+2 q^{12}+2 q^8-q^6-2 q^4+q^2- q^{-2} + q^{-4} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{40}+q^{38}-2 q^{36}+q^{34}-q^{32}+q^{28}-q^{26}+q^{24}-2 q^{22}+q^{20}-2 q^{18}+2 q^{16}+3 q^{12}+2 q^{10}+q^8+2 q^6-q^4+q^2-1} |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 85"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-4 t^3+8 t^2-10 t+11-10 t^{-1} +8 t^{-2} -4 t^{-3} + t^{-4} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+4 z^6+4 z^4+2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 57, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q+3-4 q^{-1} +7 q^{-2} -8 q^{-3} +9 q^{-4} -9 q^{-5} +7 q^{-6} -5 q^{-7} +3 q^{-8} - q^{-9} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{11}+3 z^4 a^{10}-z^2 a^{10}+5 z^5 a^9-4 z^3 a^9+z a^9+6 z^6 a^8-7 z^4 a^8+z^2 a^8+6 z^7 a^7-10 z^5 a^7+2 z^3 a^7+5 z^8 a^6-12 z^6 a^6+8 z^4 a^6-5 z^2 a^6+a^6+2 z^9 a^5-15 z^5 a^5+14 z^3 a^5-2 z a^5+8 z^8 a^4-32 z^6 a^4+37 z^4 a^4-14 z^2 a^4+a^4+2 z^9 a^3-5 z^7 a^3-4 z^5 a^3+11 z^3 a^3-2 z a^3+3 z^8 a^2-14 z^6 a^2+19 z^4 a^2-7 z^2 a^2-a^2+z^7 a-4 z^5 a+4 z^3 a-z a} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 85"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q+3-4 q^{-1} +7 q^{-2} -8 q^{-3} +9 q^{-4} -9 q^{-5} +7 q^{-6} -5 q^{-7} +3 q^{-8} - q^{-9} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, -3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -4 is the signature of 10 85. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5-3 q^4-q^3+10 q^2-8 q-11+25 q^{-1} -5 q^{-2} -30 q^{-3} +35 q^{-4} +6 q^{-5} -47 q^{-6} +36 q^{-7} +20 q^{-8} -57 q^{-9} +29 q^{-10} +31 q^{-11} -54 q^{-12} +17 q^{-13} +32 q^{-14} -40 q^{-15} +9 q^{-16} +21 q^{-17} -24 q^{-18} +8 q^{-19} +8 q^{-20} -12 q^{-21} +5 q^{-22} +2 q^{-23} -3 q^{-24} + q^{-25} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{12}+3 q^{11}+q^{10}-5 q^9-8 q^8+8 q^7+20 q^6-7 q^5-34 q^4-6 q^3+50 q^2+26 q-54-56 q^{-1} +53 q^{-2} +77 q^{-3} -27 q^{-4} -104 q^{-5} +10 q^{-6} +101 q^{-7} +28 q^{-8} -104 q^{-9} -45 q^{-10} +81 q^{-11} +73 q^{-12} -69 q^{-13} -79 q^{-14} +38 q^{-15} +95 q^{-16} -17 q^{-17} -98 q^{-18} -15 q^{-19} +102 q^{-20} +43 q^{-21} -97 q^{-22} -67 q^{-23} +80 q^{-24} +88 q^{-25} -61 q^{-26} -88 q^{-27} +33 q^{-28} +77 q^{-29} -11 q^{-30} -53 q^{-31} -5 q^{-32} +28 q^{-33} +9 q^{-34} -6 q^{-35} -7 q^{-36} -8 q^{-37} +5 q^{-38} +10 q^{-39} + q^{-40} -11 q^{-41} - q^{-42} +7 q^{-43} -2 q^{-45} -2 q^{-46} +3 q^{-47} - q^{-48} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{22}-3 q^{21}-q^{20}+5 q^{19}+3 q^{18}+8 q^{17}-18 q^{16}-18 q^{15}+5 q^{14}+16 q^{13}+60 q^{12}-19 q^{11}-62 q^{10}-49 q^9-20 q^8+151 q^7+63 q^6-36 q^5-125 q^4-181 q^3+147 q^2+156 q+127-58 q^{-1} -340 q^{-2} -5 q^{-3} +69 q^{-4} +262 q^{-5} +170 q^{-6} -295 q^{-7} -105 q^{-8} -184 q^{-9} +169 q^{-10} +336 q^{-11} -76 q^{-12} +29 q^{-13} -374 q^{-14} -104 q^{-15} +271 q^{-16} +104 q^{-17} +337 q^{-18} -358 q^{-19} -366 q^{-20} +37 q^{-21} +142 q^{-22} +644 q^{-23} -205 q^{-24} -527 q^{-25} -220 q^{-26} +102 q^{-27} +884 q^{-28} -28 q^{-29} -643 q^{-30} -461 q^{-31} +60 q^{-32} +1091 q^{-33} +171 q^{-34} -724 q^{-35} -716 q^{-36} -48 q^{-37} +1218 q^{-38} +437 q^{-39} -644 q^{-40} -898 q^{-41} -282 q^{-42} +1098 q^{-43} +645 q^{-44} -338 q^{-45} -815 q^{-46} -499 q^{-47} +712 q^{-48} +603 q^{-49} -13 q^{-50} -485 q^{-51} -494 q^{-52} +309 q^{-53} +350 q^{-54} +119 q^{-55} -162 q^{-56} -319 q^{-57} +91 q^{-58} +119 q^{-59} +93 q^{-60} -8 q^{-61} -147 q^{-62} +24 q^{-63} +13 q^{-64} +40 q^{-65} +21 q^{-66} -52 q^{-67} +11 q^{-68} -7 q^{-69} +10 q^{-70} +10 q^{-71} -14 q^{-72} +5 q^{-73} -3 q^{-74} +2 q^{-75} +2 q^{-76} -3 q^{-77} + q^{-78} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{35}+3 q^{34}+q^{33}-5 q^{32}-3 q^{31}-3 q^{30}+2 q^{29}+16 q^{28}+21 q^{27}-7 q^{26}-29 q^{25}-41 q^{24}-28 q^{23}+29 q^{22}+93 q^{21}+89 q^{20}-3 q^{19}-112 q^{18}-174 q^{17}-114 q^{16}+83 q^{15}+265 q^{14}+259 q^{13}+43 q^{12}-242 q^{11}-419 q^{10}-284 q^9+121 q^8+472 q^7+509 q^6+169 q^5-344 q^4-664 q^3-481 q^2+44 q+568+728 q^{-1} +358 q^{-2} -273 q^{-3} -697 q^{-4} -698 q^{-5} -235 q^{-6} +428 q^{-7} +810 q^{-8} +669 q^{-9} +162 q^{-10} -574 q^{-11} -1022 q^{-12} -775 q^{-13} +44 q^{-14} +947 q^{-15} +1377 q^{-16} +769 q^{-17} -627 q^{-18} -1706 q^{-19} -1571 q^{-20} -121 q^{-21} +1756 q^{-22} +2364 q^{-23} +955 q^{-24} -1455 q^{-25} -2896 q^{-26} -1944 q^{-27} +934 q^{-28} +3241 q^{-29} +2784 q^{-30} -223 q^{-31} -3309 q^{-32} -3582 q^{-33} -489 q^{-34} +3255 q^{-35} +4141 q^{-36} +1194 q^{-37} -3072 q^{-38} -4641 q^{-39} -1784 q^{-40} +2933 q^{-41} +5000 q^{-42} +2300 q^{-43} -2798 q^{-44} -5391 q^{-45} -2771 q^{-46} +2733 q^{-47} +5799 q^{-48} +3259 q^{-49} -2644 q^{-50} -6212 q^{-51} -3845 q^{-52} +2423 q^{-53} +6596 q^{-54} +4500 q^{-55} -2012 q^{-56} -6748 q^{-57} -5158 q^{-58} +1309 q^{-59} +6590 q^{-60} +5694 q^{-61} -452 q^{-62} -6008 q^{-63} -5906 q^{-64} -476 q^{-65} +5068 q^{-66} +5716 q^{-67} +1249 q^{-68} -3906 q^{-69} -5120 q^{-70} -1731 q^{-71} +2745 q^{-72} +4217 q^{-73} +1863 q^{-74} -1721 q^{-75} -3230 q^{-76} -1709 q^{-77} +979 q^{-78} +2297 q^{-79} +1377 q^{-80} -499 q^{-81} -1517 q^{-82} -1018 q^{-83} +217 q^{-84} +965 q^{-85} +698 q^{-86} -97 q^{-87} -572 q^{-88} -436 q^{-89} +11 q^{-90} +330 q^{-91} +276 q^{-92} +5 q^{-93} -184 q^{-94} -150 q^{-95} -12 q^{-96} +84 q^{-97} +83 q^{-98} +17 q^{-99} -44 q^{-100} -44 q^{-101} +2 q^{-102} +14 q^{-103} +11 q^{-104} +10 q^{-105} -10 q^{-106} -9 q^{-107} +5 q^{-108} +2 q^{-109} -2 q^{-110} +3 q^{-111} -2 q^{-112} -2 q^{-113} +3 q^{-114} - q^{-115} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{51}-3 q^{50}-q^{49}+5 q^{48}+3 q^{47}+3 q^{46}-7 q^{45}-19 q^{43}-19 q^{42}+19 q^{41}+30 q^{40}+47 q^{39}+11 q^{38}+14 q^{37}-82 q^{36}-132 q^{35}-65 q^{34}+12 q^{33}+153 q^{32}+172 q^{31}+271 q^{30}+10 q^{29}-263 q^{28}-386 q^{27}-392 q^{26}-101 q^{25}+163 q^{24}+779 q^{23}+674 q^{22}+295 q^{21}-280 q^{20}-857 q^{19}-1017 q^{18}-903 q^{17}+386 q^{16}+1025 q^{15}+1455 q^{14}+1100 q^{13}+166 q^{12}-999 q^{11}-2164 q^{10}-1355 q^9-624 q^8+912 q^7+1894 q^6+2239 q^5+1316 q^4-838 q^3-1514 q^2-2567 q-1844-637 q^{-1} +1515 q^{-2} +2761 q^{-3} +2226 q^{-4} +2025 q^{-5} -477 q^{-6} -2275 q^{-7} -3943 q^{-8} -2954 q^{-9} -863 q^{-10} +1443 q^{-11} +4990 q^{-12} +5003 q^{-13} +3108 q^{-14} -1916 q^{-15} -5439 q^{-16} -7154 q^{-17} -5509 q^{-18} +1360 q^{-19} +7112 q^{-20} +10282 q^{-21} +6332 q^{-22} -531 q^{-23} -8862 q^{-24} -13337 q^{-25} -8283 q^{-26} +1388 q^{-27} +12063 q^{-28} +14700 q^{-29} +9925 q^{-30} -2652 q^{-31} -15350 q^{-32} -17506 q^{-33} -9413 q^{-34} +6216 q^{-35} +17288 q^{-36} +19631 q^{-37} +8147 q^{-38} -10274 q^{-39} -21296 q^{-40} -19434 q^{-41} -3723 q^{-42} +13562 q^{-43} +24478 q^{-44} +18265 q^{-45} -1619 q^{-46} -19621 q^{-47} -25325 q^{-48} -13112 q^{-49} +6851 q^{-50} +24738 q^{-51} +24923 q^{-52} +6503 q^{-53} -15552 q^{-54} -27477 q^{-55} -19579 q^{-56} +833 q^{-57} +23230 q^{-58} +28554 q^{-59} +12025 q^{-60} -12374 q^{-61} -28506 q^{-62} -23672 q^{-63} -2804 q^{-64} +22847 q^{-65} +31668 q^{-66} +15869 q^{-67} -11121 q^{-68} -30875 q^{-69} -28059 q^{-70} -5745 q^{-71} +23709 q^{-72} +36240 q^{-73} +21095 q^{-74} -8973 q^{-75} -33504 q^{-76} -34205 q^{-77} -11591 q^{-78} +21746 q^{-79} +39864 q^{-80} +28525 q^{-81} -2002 q^{-82} -31212 q^{-83} -38372 q^{-84} -20202 q^{-85} +13247 q^{-86} +36662 q^{-87} +33096 q^{-88} +8206 q^{-89} -21136 q^{-90} -34513 q^{-91} -25271 q^{-92} +1577 q^{-93} +25208 q^{-94} +29091 q^{-95} +14341 q^{-96} -8417 q^{-97} -22898 q^{-98} -21870 q^{-99} -5524 q^{-100} +12090 q^{-101} +18449 q^{-102} +12608 q^{-103} -603 q^{-104} -10862 q^{-105} -13240 q^{-106} -5608 q^{-107} +4063 q^{-108} +8467 q^{-109} +6986 q^{-110} +1100 q^{-111} -3872 q^{-112} -5896 q^{-113} -2767 q^{-114} +1324 q^{-115} +3056 q^{-116} +2674 q^{-117} +411 q^{-118} -1296 q^{-119} -2219 q^{-120} -792 q^{-121} +705 q^{-122} +1051 q^{-123} +842 q^{-124} -56 q^{-125} -505 q^{-126} -861 q^{-127} -148 q^{-128} +389 q^{-129} +372 q^{-130} +286 q^{-131} -76 q^{-132} -173 q^{-133} -340 q^{-134} -25 q^{-135} +146 q^{-136} +101 q^{-137} +100 q^{-138} -27 q^{-139} -31 q^{-140} -111 q^{-141} +4 q^{-142} +39 q^{-143} +9 q^{-144} +27 q^{-145} -12 q^{-146} +3 q^{-147} -26 q^{-148} +7 q^{-149} +9 q^{-150} -6 q^{-151} +7 q^{-152} -5 q^{-153} +2 q^{-154} -3 q^{-155} +2 q^{-156} +2 q^{-157} -3 q^{-158} + q^{-159} } |
| 7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{70}+3 q^{69}+q^{68}-5 q^{67}-3 q^{66}-3 q^{65}+7 q^{64}+5 q^{63}+3 q^{62}+17 q^{61}+7 q^{60}-20 q^{59}-35 q^{58}-50 q^{57}-13 q^{56}+25 q^{55}+38 q^{54}+116 q^{53}+116 q^{52}+52 q^{51}-56 q^{50}-230 q^{49}-261 q^{48}-203 q^{47}-114 q^{46}+197 q^{45}+457 q^{44}+582 q^{43}+535 q^{42}+16 q^{41}-471 q^{40}-865 q^{39}-1151 q^{38}-777 q^{37}-84 q^{36}+861 q^{35}+1815 q^{34}+1801 q^{33}+1174 q^{32}+25 q^{31}-1678 q^{30}-2620 q^{29}-2858 q^{28}-1894 q^{27}+485 q^{26}+2471 q^{25}+3902 q^{24}+4055 q^{23}+2110 q^{22}-453 q^{21}-3466 q^{20}-5587 q^{19}-4903 q^{18}-2842 q^{17}+747 q^{16}+4617 q^{15}+6277 q^{14}+6402 q^{13}+3683 q^{12}-1023 q^{11}-4680 q^{10}-7562 q^9-7618 q^8-4450 q^7-526 q^6+4785 q^5+8514 q^4+8854 q^3+7412 q^2+2202 q-4088-8969 q^{-1} -12639 q^{-2} -11119 q^{-3} -5366 q^{-4} +2518 q^{-5} +12335 q^{-6} +17733 q^{-7} +16934 q^{-8} +10085 q^{-9} -3917 q^{-10} -17504 q^{-11} -25955 q^{-12} -25579 q^{-13} -11961 q^{-14} +7902 q^{-15} +27206 q^{-16} +38331 q^{-17} +31816 q^{-18} +10973 q^{-19} -17614 q^{-20} -43212 q^{-21} -49882 q^{-22} -35180 q^{-23} -2576 q^{-24} +36261 q^{-25} +60095 q^{-26} +59166 q^{-27} +30374 q^{-28} -17217 q^{-29} -58822 q^{-30} -76777 q^{-31} -59759 q^{-32} -11146 q^{-33} +44334 q^{-34} +83425 q^{-35} +85352 q^{-36} +44119 q^{-37} -19072 q^{-38} -77567 q^{-39} -101889 q^{-40} -75846 q^{-41} -13346 q^{-42} +59692 q^{-43} +107305 q^{-44} +102017 q^{-45} +47803 q^{-46} -33171 q^{-47} -101364 q^{-48} -119374 q^{-49} -80075 q^{-50} +1679 q^{-51} +86002 q^{-52} +127346 q^{-53} +107015 q^{-54} +30731 q^{-55} -64144 q^{-56} -126624 q^{-57} -127154 q^{-58} -61142 q^{-59} +39081 q^{-60} +119166 q^{-61} +140265 q^{-62} +87514 q^{-63} -13413 q^{-64} -107274 q^{-65} -147457 q^{-66} -108925 q^{-67} -10396 q^{-68} +93350 q^{-69} +149735 q^{-70} +125223 q^{-71} +31168 q^{-72} -79427 q^{-73} -149185 q^{-74} -136940 q^{-75} -47606 q^{-76} +67430 q^{-77} +147319 q^{-78} +144941 q^{-79} +59757 q^{-80} -58609 q^{-81} -146290 q^{-82} -151040 q^{-83} -68037 q^{-84} +53918 q^{-85} +147755 q^{-86} +157082 q^{-87} +74037 q^{-88} -52635 q^{-89} -152675 q^{-90} -165536 q^{-91} -80528 q^{-92} +53128 q^{-93} +160931 q^{-94} +177729 q^{-95} +90155 q^{-96} -51946 q^{-97} -169922 q^{-98} -193615 q^{-99} -105553 q^{-100} +45129 q^{-101} +176076 q^{-102} +210911 q^{-103} +126678 q^{-104} -29931 q^{-105} -174293 q^{-106} -224712 q^{-107} -151314 q^{-108} +5176 q^{-109} +161036 q^{-110} +230137 q^{-111} +174279 q^{-112} +26051 q^{-113} -135260 q^{-114} -222260 q^{-115} -189501 q^{-116} -58771 q^{-117} +99457 q^{-118} +200049 q^{-119} +192166 q^{-120} +86054 q^{-121} -59395 q^{-122} -165784 q^{-123} -180156 q^{-124} -102449 q^{-125} +21856 q^{-126} +124846 q^{-127} +155432 q^{-128} +105699 q^{-129} +7300 q^{-130} -84200 q^{-131} -123006 q^{-132} -96593 q^{-133} -24998 q^{-134} +49352 q^{-135} +88772 q^{-136} +79299 q^{-137} +31753 q^{-138} -23758 q^{-139} -58207 q^{-140} -58780 q^{-141} -30032 q^{-142} +7861 q^{-143} +34258 q^{-144} +39237 q^{-145} +23717 q^{-146} +277 q^{-147} -17836 q^{-148} -23622 q^{-149} -16148 q^{-150} -2941 q^{-151} +8017 q^{-152} +12527 q^{-153} +9393 q^{-154} +2875 q^{-155} -2800 q^{-156} -5722 q^{-157} -4630 q^{-158} -1814 q^{-159} +661 q^{-160} +2141 q^{-161} +1611 q^{-162} +655 q^{-163} +75 q^{-164} -423 q^{-165} -165 q^{-166} -24 q^{-167} -122 q^{-168} -57 q^{-169} -378 q^{-170} -366 q^{-171} +17 q^{-172} +183 q^{-173} +479 q^{-174} +383 q^{-175} +13 q^{-176} -99 q^{-177} -332 q^{-178} -295 q^{-179} -78 q^{-180} +20 q^{-181} +237 q^{-182} +211 q^{-183} +25 q^{-184} -14 q^{-185} -106 q^{-186} -96 q^{-187} -20 q^{-188} -27 q^{-189} +63 q^{-190} +62 q^{-191} -2 q^{-192} +6 q^{-193} -29 q^{-194} -17 q^{-195} +7 q^{-196} -11 q^{-197} +12 q^{-198} +9 q^{-199} -6 q^{-200} +6 q^{-201} -6 q^{-202} -4 q^{-203} +5 q^{-204} -2 q^{-205} +3 q^{-206} -2 q^{-207} -2 q^{-208} +3 q^{-209} - q^{-210} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




