10 142: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
| Line 43: | Line 43: | ||
coloured_jones_5 = <math>-2 q^{132}+2 q^{129}+2 q^{128}+4 q^{127}-q^{126}-3 q^{125}-7 q^{124}-5 q^{123}+2 q^{122}+10 q^{121}+14 q^{120}+10 q^{119}-13 q^{118}-27 q^{117}-23 q^{116}+37 q^{114}+48 q^{113}+11 q^{112}-45 q^{111}-63 q^{110}-33 q^{109}+41 q^{108}+83 q^{107}+51 q^{106}-37 q^{105}-89 q^{104}-64 q^{103}+26 q^{102}+92 q^{101}+74 q^{100}-19 q^{99}-90 q^{98}-76 q^{97}+15 q^{96}+86 q^{95}+75 q^{94}-12 q^{93}-85 q^{92}-71 q^{91}+11 q^{90}+81 q^{89}+71 q^{88}-12 q^{87}-79 q^{86}-65 q^{85}+8 q^{84}+72 q^{83}+66 q^{82}-2 q^{81}-66 q^{80}-63 q^{79}-5 q^{78}+53 q^{77}+63 q^{76}+17 q^{75}-44 q^{74}-59 q^{73}-24 q^{72}+24 q^{71}+53 q^{70}+36 q^{69}-13 q^{68}-42 q^{67}-36 q^{66}-6 q^{65}+27 q^{64}+38 q^{63}+16 q^{62}-13 q^{61}-27 q^{60}-24 q^{59}-3 q^{58}+17 q^{57}+20 q^{56}+14 q^{55}-4 q^{54}-15 q^{53}-14 q^{52}-5 q^{51}+2 q^{50}+12 q^{49}+9 q^{48}+3 q^{47}-3 q^{46}-5 q^{45}-8 q^{44}-3 q^{43}+q^{42}+5 q^{41}+4 q^{40}+5 q^{39}-q^{38}-3 q^{37}-5 q^{36}-4 q^{35}+5 q^{33}+3 q^{32}+3 q^{31}-q^{30}-4 q^{29}-3 q^{28}+2 q^{27}+2 q^{25}+2 q^{24}-q^{23}-2 q^{22}+q^{21}+q^{18}-q^{16}+q^{15}</math> | |
coloured_jones_5 = <math>-2 q^{132}+2 q^{129}+2 q^{128}+4 q^{127}-q^{126}-3 q^{125}-7 q^{124}-5 q^{123}+2 q^{122}+10 q^{121}+14 q^{120}+10 q^{119}-13 q^{118}-27 q^{117}-23 q^{116}+37 q^{114}+48 q^{113}+11 q^{112}-45 q^{111}-63 q^{110}-33 q^{109}+41 q^{108}+83 q^{107}+51 q^{106}-37 q^{105}-89 q^{104}-64 q^{103}+26 q^{102}+92 q^{101}+74 q^{100}-19 q^{99}-90 q^{98}-76 q^{97}+15 q^{96}+86 q^{95}+75 q^{94}-12 q^{93}-85 q^{92}-71 q^{91}+11 q^{90}+81 q^{89}+71 q^{88}-12 q^{87}-79 q^{86}-65 q^{85}+8 q^{84}+72 q^{83}+66 q^{82}-2 q^{81}-66 q^{80}-63 q^{79}-5 q^{78}+53 q^{77}+63 q^{76}+17 q^{75}-44 q^{74}-59 q^{73}-24 q^{72}+24 q^{71}+53 q^{70}+36 q^{69}-13 q^{68}-42 q^{67}-36 q^{66}-6 q^{65}+27 q^{64}+38 q^{63}+16 q^{62}-13 q^{61}-27 q^{60}-24 q^{59}-3 q^{58}+17 q^{57}+20 q^{56}+14 q^{55}-4 q^{54}-15 q^{53}-14 q^{52}-5 q^{51}+2 q^{50}+12 q^{49}+9 q^{48}+3 q^{47}-3 q^{46}-5 q^{45}-8 q^{44}-3 q^{43}+q^{42}+5 q^{41}+4 q^{40}+5 q^{39}-q^{38}-3 q^{37}-5 q^{36}-4 q^{35}+5 q^{33}+3 q^{32}+3 q^{31}-q^{30}-4 q^{29}-3 q^{28}+2 q^{27}+2 q^{25}+2 q^{24}-q^{23}-2 q^{22}+q^{21}+q^{18}-q^{16}+q^{15}</math> | |
||
coloured_jones_6 = <math>q^{183}+2 q^{181}-2 q^{179}-4 q^{178}-4 q^{177}-3 q^{176}+q^{175}+10 q^{174}+9 q^{173}+8 q^{172}-q^{171}-7 q^{170}-25 q^{169}-23 q^{168}-q^{167}+14 q^{166}+37 q^{165}+38 q^{164}+33 q^{163}-28 q^{162}-65 q^{161}-63 q^{160}-45 q^{159}+27 q^{158}+88 q^{157}+136 q^{156}+42 q^{155}-58 q^{154}-131 q^{153}-156 q^{152}-60 q^{151}+83 q^{150}+227 q^{149}+151 q^{148}+16 q^{147}-138 q^{146}-234 q^{145}-161 q^{144}+27 q^{143}+247 q^{142}+211 q^{141}+87 q^{140}-101 q^{139}-245 q^{138}-204 q^{137}-20 q^{136}+228 q^{135}+215 q^{134}+111 q^{133}-76 q^{132}-230 q^{131}-205 q^{130}-29 q^{129}+216 q^{128}+203 q^{127}+106 q^{126}-73 q^{125}-220 q^{124}-197 q^{123}-25 q^{122}+211 q^{121}+192 q^{120}+103 q^{119}-68 q^{118}-208 q^{117}-190 q^{116}-33 q^{115}+193 q^{114}+178 q^{113}+110 q^{112}-43 q^{111}-180 q^{110}-182 q^{109}-60 q^{108}+145 q^{107}+154 q^{106}+126 q^{105}+5 q^{104}-129 q^{103}-167 q^{102}-100 q^{101}+70 q^{100}+110 q^{99}+135 q^{98}+65 q^{97}-52 q^{96}-127 q^{95}-126 q^{94}-12 q^{93}+37 q^{92}+110 q^{91}+102 q^{90}+30 q^{89}-50 q^{88}-104 q^{87}-62 q^{86}-41 q^{85}+38 q^{84}+80 q^{83}+69 q^{82}+28 q^{81}-32 q^{80}-43 q^{79}-68 q^{78}-29 q^{77}+12 q^{76}+37 q^{75}+49 q^{74}+23 q^{73}+14 q^{72}-29 q^{71}-33 q^{70}-28 q^{69}-16 q^{68}+14 q^{67}+14 q^{66}+32 q^{65}+13 q^{64}+4 q^{63}-11 q^{62}-22 q^{61}-8 q^{60}-17 q^{59}+7 q^{58}+8 q^{57}+15 q^{56}+8 q^{55}+6 q^{53}-16 q^{52}-4 q^{51}-7 q^{50}+q^{49}-q^{48}+2 q^{47}+14 q^{46}-3 q^{45}+4 q^{44}-3 q^{43}-q^{42}-8 q^{41}-5 q^{40}+7 q^{39}-2 q^{38}+5 q^{37}+2 q^{36}+3 q^{35}-4 q^{34}-4 q^{33}+3 q^{32}-3 q^{31}+q^{30}+q^{29}+3 q^{28}-q^{27}-2 q^{26}+2 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math> | |
coloured_jones_6 = <math>q^{183}+2 q^{181}-2 q^{179}-4 q^{178}-4 q^{177}-3 q^{176}+q^{175}+10 q^{174}+9 q^{173}+8 q^{172}-q^{171}-7 q^{170}-25 q^{169}-23 q^{168}-q^{167}+14 q^{166}+37 q^{165}+38 q^{164}+33 q^{163}-28 q^{162}-65 q^{161}-63 q^{160}-45 q^{159}+27 q^{158}+88 q^{157}+136 q^{156}+42 q^{155}-58 q^{154}-131 q^{153}-156 q^{152}-60 q^{151}+83 q^{150}+227 q^{149}+151 q^{148}+16 q^{147}-138 q^{146}-234 q^{145}-161 q^{144}+27 q^{143}+247 q^{142}+211 q^{141}+87 q^{140}-101 q^{139}-245 q^{138}-204 q^{137}-20 q^{136}+228 q^{135}+215 q^{134}+111 q^{133}-76 q^{132}-230 q^{131}-205 q^{130}-29 q^{129}+216 q^{128}+203 q^{127}+106 q^{126}-73 q^{125}-220 q^{124}-197 q^{123}-25 q^{122}+211 q^{121}+192 q^{120}+103 q^{119}-68 q^{118}-208 q^{117}-190 q^{116}-33 q^{115}+193 q^{114}+178 q^{113}+110 q^{112}-43 q^{111}-180 q^{110}-182 q^{109}-60 q^{108}+145 q^{107}+154 q^{106}+126 q^{105}+5 q^{104}-129 q^{103}-167 q^{102}-100 q^{101}+70 q^{100}+110 q^{99}+135 q^{98}+65 q^{97}-52 q^{96}-127 q^{95}-126 q^{94}-12 q^{93}+37 q^{92}+110 q^{91}+102 q^{90}+30 q^{89}-50 q^{88}-104 q^{87}-62 q^{86}-41 q^{85}+38 q^{84}+80 q^{83}+69 q^{82}+28 q^{81}-32 q^{80}-43 q^{79}-68 q^{78}-29 q^{77}+12 q^{76}+37 q^{75}+49 q^{74}+23 q^{73}+14 q^{72}-29 q^{71}-33 q^{70}-28 q^{69}-16 q^{68}+14 q^{67}+14 q^{66}+32 q^{65}+13 q^{64}+4 q^{63}-11 q^{62}-22 q^{61}-8 q^{60}-17 q^{59}+7 q^{58}+8 q^{57}+15 q^{56}+8 q^{55}+6 q^{53}-16 q^{52}-4 q^{51}-7 q^{50}+q^{49}-q^{48}+2 q^{47}+14 q^{46}-3 q^{45}+4 q^{44}-3 q^{43}-q^{42}-8 q^{41}-5 q^{40}+7 q^{39}-2 q^{38}+5 q^{37}+2 q^{36}+3 q^{35}-4 q^{34}-4 q^{33}+3 q^{32}-3 q^{31}+q^{30}+q^{29}+3 q^{28}-q^{27}-2 q^{26}+2 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math> | |
||
coloured_jones_7 = |
coloured_jones_7 = | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
| Line 50: | Line 50: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 142]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[11, 19, 12, 18], X[5, 15, 6, 14], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 142]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[11, 19, 12, 18], X[5, 15, 6, 14], |
|||
X[17, 7, 18, 6], X[7, 17, 8, 16], X[15, 9, 16, 8], X[13, 1, 14, 20], |
X[17, 7, 18, 6], X[7, 17, 8, 16], X[15, 9, 16, 8], X[13, 1, 14, 20], |
||
X[19, 13, 20, 12], X[2, 10, 3, 9]]</nowiki></ |
X[19, 13, 20, 12], X[2, 10, 3, 9]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 142]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, -4, 5, -6, 7, 10, -2, -3, 9, -8, 4, -7, 6, -5, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 142]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -1, -4, 5, -6, 7, 10, -2, -3, 9, -8, 4, -7, 6, -5, |
|||
3, -9, 8]</nowiki></ |
3, -9, 8]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 142]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, -14, -16, 2, -18, -20, -8, -6, -12]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 142]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, -14, -16, 2, -18, -20, -8, -6, -12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 142]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_142_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 142]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, 2, 1, 1, 1, 2, 3, -2, 3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 142]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 142]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_142_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 142]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus, |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki></ |
}</nowiki></code></td></tr> |
||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 142]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 2 2 3 |
|||
-1 + -- - -- + - + 2 t - 3 t + 2 t |
-1 + -- - -- + - + 2 t - 3 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 142]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 8 z + 9 z + 2 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 142]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 142]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 8 z + 9 z + 2 z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 142]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 4 5 6 7 8 9 10 |
|||
<table><tr align=left> |
|||
q - q + 2 q - 2 q + 3 q - 2 q + 2 q - 2 q</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 142]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 142]}</nowiki></code></td></tr> |
|||
q + q + q + q + 2 q + 3 q - q - 3 q - 2 q - q + q</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 142]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 4 6 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 142]], KnotSignature[Knot[10, 142]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{15, 6}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 142]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 4 5 6 7 8 9 10 |
|||
q - q + 2 q - 2 q + 3 q - 2 q + 2 q - 2 q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 142]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 142]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 10 14 18 20 22 24 28 30 32 34 38 |
|||
q + q + q + q + 2 q + 3 q - q - 3 q - 2 q - q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 142]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 4 6 6 |
|||
-12 5 4 -6 5 z 7 z 6 z z 5 z 5 z z z |
-12 5 4 -6 5 z 7 z 6 z z 5 z 5 z z z |
||
a - --- + -- + a - ---- + ---- + ---- - --- + ---- + ---- + -- + -- |
a - --- + -- + a - ---- + ---- + ---- - --- + ---- + ---- + -- + -- |
||
10 8 10 8 6 10 8 6 8 6 |
10 8 10 8 6 10 8 6 8 6 |
||
a a a a a a a a a a</nowiki></ |
a a a a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 142]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 142]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 |
|||
-12 5 4 -6 2 z 4 z 6 z z 17 z 10 z 6 z |
-12 5 4 -6 2 z 4 z 6 z z 17 z 10 z 6 z |
||
a + --- + -- - a + --- - --- - --- - --- - ----- - ----- + ---- + |
a + --- + -- - a + --- - --- - --- - --- - ----- - ----- + ---- + |
||
| Line 118: | Line 204: | ||
---- - ---- - ---- + -- + --- + ---- + -- + --- + -- |
---- - ---- - ---- + -- + --- + ---- + -- + --- + -- |
||
7 10 8 6 11 9 7 10 8 |
7 10 8 6 11 9 7 10 8 |
||
a a a a a a a a a</nowiki></ |
a a a a a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 142]], Vassiliev[3][Knot[10, 142]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{8, 21}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 142]], Vassiliev[3][Knot[10, 142]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{8, 21}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 142]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 7 7 9 2 11 2 11 3 13 3 13 4 15 4 |
|||
q + q + q t + q t + q t + q t + q t + 2 q t + q t + |
q + q + q t + q t + q t + q t + q t + 2 q t + q t + |
||
17 5 17 6 21 7 |
17 5 17 6 21 7 |
||
2 q t + 2 q t + 2 q t</nowiki></ |
2 q t + 2 q t + 2 q t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 142], 2][q]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 7 9 10 11 12 13 14 15 17 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 142], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 7 9 10 11 12 13 14 15 17 |
|||
q - q + 3 q - 2 q - 2 q + 5 q - q - 4 q + 4 q - 4 q + |
q - q + 3 q - 2 q - 2 q + 5 q - q - 4 q + 4 q - 4 q + |
||
18 19 20 22 23 24 25 26 29 |
18 19 20 22 23 24 25 26 29 |
||
3 q + 2 q - 3 q + 3 q - 3 q - q + q - q + q</nowiki></ |
3 q + 2 q - 3 q + 3 q - 3 q - q + q - q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
Latest revision as of 17:02, 1 September 2005
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 142's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
|
10_142 is also known as the pretzel knot P(-4,3,3). |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X11,19,12,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X13,1,14,20 X19,13,20,12 X2,10,3,9 |
| Gauss code | 1, -10, 2, -1, -4, 5, -6, 7, 10, -2, -3, 9, -8, 4, -7, 6, -5, 3, -9, 8 |
| Dowker-Thistlethwaite code | 4 10 -14 -16 2 -18 -20 -8 -6 -12 |
| Conway Notation | [31,3,3-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{4, 10}, {3, 5}, {1, 4}, {6, 9}, {5, 8}, {9, 7}, {11, 6}, {10, 12}, {2, 11}, {12, 3}, {8, 2}, {7, 1}] |
[edit Notes on presentations of 10 142]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 142"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,4,11,3 X11,19,12,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X13,1,14,20 X19,13,20,12 X2,10,3,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, -4, 5, -6, 7, 10, -2, -3, 9, -8, 4, -7, 6, -5, 3, -9, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 -14 -16 2 -18 -20 -8 -6 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[31,3,3-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
[math]\displaystyle{ \textrm{BR}(4,\{1,1,1,2,1,1,1,2,3,-2,3\}) }[/math] |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{4, 10}, {3, 5}, {1, 4}, {6, 9}, {5, 8}, {9, 7}, {11, 6}, {10, 12}, {2, 11}, {12, 3}, {8, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 2 t^3-3 t^2+2 t-1+2 t^{-1} -3 t^{-2} +2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ 2 z^6+9 z^4+8 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \left\{2,t^2+t+1\right\} }[/math] |
| Determinant and Signature | { 15, 6 } |
| Jones polynomial | [math]\displaystyle{ -2 q^{10}+2 q^9-2 q^8+3 q^7-2 q^6+2 q^5-q^4+q^3 }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^6 a^{-6} +z^6 a^{-8} +5 z^4 a^{-6} +5 z^4 a^{-8} -z^4 a^{-10} +6 z^2 a^{-6} +7 z^2 a^{-8} -5 z^2 a^{-10} + a^{-6} +4 a^{-8} -5 a^{-10} + a^{-12} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^8 a^{-8} +z^8 a^{-10} +z^7 a^{-7} +2 z^7 a^{-9} +z^7 a^{-11} +z^6 a^{-6} -5 z^6 a^{-8} -6 z^6 a^{-10} -4 z^5 a^{-7} -9 z^5 a^{-9} -5 z^5 a^{-11} -5 z^4 a^{-6} +9 z^4 a^{-8} +15 z^4 a^{-10} +z^4 a^{-12} +3 z^3 a^{-7} +12 z^3 a^{-9} +9 z^3 a^{-11} +6 z^2 a^{-6} -10 z^2 a^{-8} -17 z^2 a^{-10} -z^2 a^{-12} -6 z a^{-9} -4 z a^{-11} +2 z a^{-13} - a^{-6} +4 a^{-8} +5 a^{-10} + a^{-12} }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{-10} + q^{-14} + q^{-18} + q^{-20} +2 q^{-22} +3 q^{-24} - q^{-28} -3 q^{-30} -2 q^{-32} - q^{-34} + q^{-38} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{-50} + q^{-54} - q^{-56} + q^{-58} +3 q^{-64} -2 q^{-66} +4 q^{-68} - q^{-70} - q^{-72} +3 q^{-74} -2 q^{-76} +2 q^{-78} - q^{-82} +3 q^{-84} +3 q^{-90} -4 q^{-92} +4 q^{-94} -2 q^{-98} +5 q^{-100} -2 q^{-102} +4 q^{-104} + q^{-106} +3 q^{-108} +2 q^{-110} -2 q^{-112} + q^{-114} +3 q^{-118} - q^{-120} -3 q^{-122} - q^{-124} + q^{-126} - q^{-130} -9 q^{-132} + q^{-136} -4 q^{-138} -7 q^{-142} + q^{-144} +3 q^{-146} -3 q^{-148} -2 q^{-150} -2 q^{-152} + q^{-154} +3 q^{-156} - q^{-158} - q^{-160} +2 q^{-162} +2 q^{-166} +2 q^{-168} - q^{-170} + q^{-172} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ q^{-5} + q^{-9} + q^{-13} + q^{-15} -2 q^{-21} }[/math] |
| 2 | [math]\displaystyle{ q^{-10} +2 q^{-16} + q^{-18} - q^{-20} + q^{-22} +2 q^{-24} - q^{-28} - q^{-34} + q^{-36} +2 q^{-38} - q^{-40} - q^{-46} -3 q^{-48} - q^{-50} - q^{-54} + q^{-56} + q^{-58} + q^{-60} }[/math] |
| 3 | [math]\displaystyle{ q^{-15} + q^{-21} +2 q^{-23} + q^{-25} - q^{-27} - q^{-29} +2 q^{-31} +3 q^{-33} + q^{-35} -2 q^{-37} -2 q^{-39} + q^{-41} +3 q^{-43} + q^{-45} -2 q^{-47} -3 q^{-49} + q^{-51} +4 q^{-53} + q^{-55} -4 q^{-57} -3 q^{-59} +2 q^{-61} +2 q^{-63} -3 q^{-65} -2 q^{-67} +3 q^{-69} + q^{-71} -2 q^{-73} - q^{-75} + q^{-77} - q^{-81} -3 q^{-83} -2 q^{-85} +3 q^{-89} -2 q^{-91} -4 q^{-93} +7 q^{-97} +4 q^{-99} -2 q^{-101} -2 q^{-103} + q^{-105} +4 q^{-107} -2 q^{-111} -2 q^{-113} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{-10} + q^{-14} + q^{-18} + q^{-20} +2 q^{-22} +3 q^{-24} - q^{-28} -3 q^{-30} -2 q^{-32} - q^{-34} + q^{-38} }[/math] |
| 1,1 | [math]\displaystyle{ q^{-20} +2 q^{-24} -2 q^{-26} +6 q^{-28} -2 q^{-30} +12 q^{-32} -2 q^{-34} +7 q^{-36} +6 q^{-42} -10 q^{-44} +10 q^{-46} -10 q^{-48} +8 q^{-50} -11 q^{-52} +2 q^{-54} -8 q^{-56} -4 q^{-58} -3 q^{-60} -6 q^{-62} +6 q^{-64} -4 q^{-66} +10 q^{-68} +2 q^{-72} +2 q^{-74} -2 q^{-76} -2 q^{-78} -4 q^{-80} -2 q^{-82} +4 q^{-84} +2 q^{-88} }[/math] |
| 2,0 | [math]\displaystyle{ q^{-20} + q^{-26} +2 q^{-28} + q^{-30} + q^{-32} +2 q^{-34} +3 q^{-36} +2 q^{-38} + q^{-40} + q^{-42} - q^{-46} + q^{-52} +2 q^{-54} +3 q^{-56} +2 q^{-58} + q^{-60} -4 q^{-62} -6 q^{-64} -10 q^{-66} -9 q^{-68} -5 q^{-70} - q^{-72} +3 q^{-74} +4 q^{-76} +6 q^{-78} +5 q^{-80} +4 q^{-82} -2 q^{-88} -2 q^{-90} - q^{-92} + q^{-96} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{-20} + q^{-24} + q^{-26} + q^{-30} +2 q^{-32} +3 q^{-34} +5 q^{-36} +4 q^{-38} +4 q^{-40} +2 q^{-42} -3 q^{-46} -3 q^{-48} -5 q^{-50} -4 q^{-52} -4 q^{-54} -3 q^{-56} - q^{-58} - q^{-60} + q^{-62} + q^{-64} + q^{-66} + q^{-68} +2 q^{-70} }[/math] |
| 1,0,0 | [math]\displaystyle{ q^{-15} + q^{-19} + q^{-23} +2 q^{-27} +3 q^{-29} +3 q^{-31} +3 q^{-33} - q^{-37} -4 q^{-39} -3 q^{-41} -3 q^{-43} - q^{-45} + q^{-49} + q^{-51} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ q^{-30} + q^{-34} + q^{-36} + q^{-38} +2 q^{-42} +2 q^{-44} +4 q^{-46} +5 q^{-48} +5 q^{-50} +7 q^{-52} +7 q^{-54} +5 q^{-56} +4 q^{-58} +4 q^{-60} +2 q^{-62} -2 q^{-64} -4 q^{-66} -6 q^{-68} -10 q^{-70} -14 q^{-72} -12 q^{-74} -12 q^{-76} -10 q^{-78} -2 q^{-80} +3 q^{-82} +6 q^{-84} +8 q^{-86} +10 q^{-88} +6 q^{-90} +2 q^{-92} -2 q^{-98} -2 q^{-100} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ q^{-20} + q^{-24} + q^{-28} + q^{-32} +2 q^{-34} +3 q^{-36} +4 q^{-38} +3 q^{-40} +3 q^{-42} - q^{-46} -4 q^{-48} -4 q^{-50} -4 q^{-52} -3 q^{-54} - q^{-56} + q^{-60} + q^{-62} + q^{-64} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ q^{-20} + q^{-24} - q^{-26} +2 q^{-28} - q^{-30} +2 q^{-32} + q^{-34} + q^{-36} +2 q^{-38} +2 q^{-42} -2 q^{-44} +3 q^{-46} -3 q^{-48} + q^{-50} -2 q^{-52} - q^{-56} - q^{-58} + q^{-60} - q^{-62} + q^{-64} - q^{-66} + q^{-68} -2 q^{-70} }[/math] |
| 1,0 | [math]\displaystyle{ q^{-30} + q^{-38} + q^{-40} - q^{-44} + q^{-46} +2 q^{-48} + q^{-50} - q^{-52} +2 q^{-54} +3 q^{-56} +3 q^{-58} + q^{-60} + q^{-62} + q^{-64} +2 q^{-66} - q^{-70} - q^{-72} - q^{-76} -2 q^{-78} -2 q^{-80} - q^{-82} -2 q^{-86} -3 q^{-88} -2 q^{-90} - q^{-94} -2 q^{-96} - q^{-98} + q^{-100} + q^{-102} + q^{-108} + q^{-110} +2 q^{-112} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{-30} + q^{-34} +2 q^{-38} - q^{-40} +2 q^{-42} +3 q^{-46} +3 q^{-48} +3 q^{-50} +5 q^{-52} +5 q^{-54} +6 q^{-56} +3 q^{-58} +4 q^{-60} -2 q^{-62} -6 q^{-66} -4 q^{-68} -8 q^{-70} -5 q^{-72} -6 q^{-74} -3 q^{-76} -2 q^{-78} - q^{-80} + q^{-82} +2 q^{-86} +2 q^{-90} + q^{-94} +2 q^{-98} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{-50} + q^{-54} - q^{-56} + q^{-58} +3 q^{-64} -2 q^{-66} +4 q^{-68} - q^{-70} - q^{-72} +3 q^{-74} -2 q^{-76} +2 q^{-78} - q^{-82} +3 q^{-84} +3 q^{-90} -4 q^{-92} +4 q^{-94} -2 q^{-98} +5 q^{-100} -2 q^{-102} +4 q^{-104} + q^{-106} +3 q^{-108} +2 q^{-110} -2 q^{-112} + q^{-114} +3 q^{-118} - q^{-120} -3 q^{-122} - q^{-124} + q^{-126} - q^{-130} -9 q^{-132} + q^{-136} -4 q^{-138} -7 q^{-142} + q^{-144} +3 q^{-146} -3 q^{-148} -2 q^{-150} -2 q^{-152} + q^{-154} +3 q^{-156} - q^{-158} - q^{-160} +2 q^{-162} +2 q^{-166} +2 q^{-168} - q^{-170} + q^{-172} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 142"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 2 t^3-3 t^2+2 t-1+2 t^{-1} -3 t^{-2} +2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 2 z^6+9 z^4+8 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \left\{2,t^2+t+1\right\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 15, 6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -2 q^{10}+2 q^9-2 q^8+3 q^7-2 q^6+2 q^5-q^4+q^3 }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^6 a^{-6} +z^6 a^{-8} +5 z^4 a^{-6} +5 z^4 a^{-8} -z^4 a^{-10} +6 z^2 a^{-6} +7 z^2 a^{-8} -5 z^2 a^{-10} + a^{-6} +4 a^{-8} -5 a^{-10} + a^{-12} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^8 a^{-8} +z^8 a^{-10} +z^7 a^{-7} +2 z^7 a^{-9} +z^7 a^{-11} +z^6 a^{-6} -5 z^6 a^{-8} -6 z^6 a^{-10} -4 z^5 a^{-7} -9 z^5 a^{-9} -5 z^5 a^{-11} -5 z^4 a^{-6} +9 z^4 a^{-8} +15 z^4 a^{-10} +z^4 a^{-12} +3 z^3 a^{-7} +12 z^3 a^{-9} +9 z^3 a^{-11} +6 z^2 a^{-6} -10 z^2 a^{-8} -17 z^2 a^{-10} -z^2 a^{-12} -6 z a^{-9} -4 z a^{-11} +2 z a^{-13} - a^{-6} +4 a^{-8} +5 a^{-10} + a^{-12} }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 142"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ 2 t^3-3 t^2+2 t-1+2 t^{-1} -3 t^{-2} +2 t^{-3} }[/math], [math]\displaystyle{ -2 q^{10}+2 q^9-2 q^8+3 q^7-2 q^6+2 q^5-q^4+q^3 }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (8, 21) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]6 is the signature of 10 142. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| [math]\displaystyle{ n }[/math] | [math]\displaystyle{ J_n }[/math] |
| 2 | [math]\displaystyle{ q^{29}-q^{26}+q^{25}-q^{24}-3 q^{23}+3 q^{22}-3 q^{20}+2 q^{19}+3 q^{18}-4 q^{17}+4 q^{15}-4 q^{14}-q^{13}+5 q^{12}-2 q^{11}-2 q^{10}+3 q^9-q^7+q^6 }[/math] |
| 3 | [math]\displaystyle{ -2 q^{55}+2 q^{53}+4 q^{52}-5 q^{51}-3 q^{50}+2 q^{49}+10 q^{48}-2 q^{47}-10 q^{46}-2 q^{45}+12 q^{44}+3 q^{43}-13 q^{42}-4 q^{41}+11 q^{40}+5 q^{39}-12 q^{38}-3 q^{37}+9 q^{36}+4 q^{35}-9 q^{34}-q^{33}+4 q^{32}+3 q^{31}-4 q^{30}-q^{29}-q^{28}+2 q^{27}+q^{26}+2 q^{25}-4 q^{24}-2 q^{23}+2 q^{22}+5 q^{21}-2 q^{20}-4 q^{19}-q^{18}+5 q^{17}+q^{16}-2 q^{15}-2 q^{14}+2 q^{13}+q^{12}-q^{10}+q^9 }[/math] |
| 4 | [math]\displaystyle{ q^{90}+2 q^{88}-2 q^{87}-4 q^{86}-q^{85}-q^{84}+10 q^{83}+5 q^{82}-9 q^{81}-11 q^{80}-11 q^{79}+19 q^{78}+23 q^{77}-4 q^{76}-20 q^{75}-30 q^{74}+19 q^{73}+36 q^{72}+8 q^{71}-22 q^{70}-42 q^{69}+12 q^{68}+39 q^{67}+15 q^{66}-19 q^{65}-45 q^{64}+9 q^{63}+37 q^{62}+13 q^{61}-14 q^{60}-41 q^{59}+6 q^{58}+34 q^{57}+12 q^{56}-9 q^{55}-36 q^{54}-q^{53}+29 q^{52}+11 q^{51}-q^{50}-28 q^{49}-10 q^{48}+18 q^{47}+9 q^{46}+9 q^{45}-14 q^{44}-13 q^{43}+6 q^{42}+q^{41}+12 q^{40}-q^{39}-8 q^{38}+2 q^{37}-8 q^{36}+5 q^{35}+3 q^{34}+7 q^{32}-9 q^{31}-q^{30}-2 q^{29}-q^{28}+10 q^{27}-2 q^{26}-4 q^{24}-4 q^{23}+6 q^{22}+2 q^{20}-q^{19}-3 q^{18}+2 q^{17}+q^{15}-q^{13}+q^{12} }[/math] |
| 5 | [math]\displaystyle{ -2 q^{132}+2 q^{129}+2 q^{128}+4 q^{127}-q^{126}-3 q^{125}-7 q^{124}-5 q^{123}+2 q^{122}+10 q^{121}+14 q^{120}+10 q^{119}-13 q^{118}-27 q^{117}-23 q^{116}+37 q^{114}+48 q^{113}+11 q^{112}-45 q^{111}-63 q^{110}-33 q^{109}+41 q^{108}+83 q^{107}+51 q^{106}-37 q^{105}-89 q^{104}-64 q^{103}+26 q^{102}+92 q^{101}+74 q^{100}-19 q^{99}-90 q^{98}-76 q^{97}+15 q^{96}+86 q^{95}+75 q^{94}-12 q^{93}-85 q^{92}-71 q^{91}+11 q^{90}+81 q^{89}+71 q^{88}-12 q^{87}-79 q^{86}-65 q^{85}+8 q^{84}+72 q^{83}+66 q^{82}-2 q^{81}-66 q^{80}-63 q^{79}-5 q^{78}+53 q^{77}+63 q^{76}+17 q^{75}-44 q^{74}-59 q^{73}-24 q^{72}+24 q^{71}+53 q^{70}+36 q^{69}-13 q^{68}-42 q^{67}-36 q^{66}-6 q^{65}+27 q^{64}+38 q^{63}+16 q^{62}-13 q^{61}-27 q^{60}-24 q^{59}-3 q^{58}+17 q^{57}+20 q^{56}+14 q^{55}-4 q^{54}-15 q^{53}-14 q^{52}-5 q^{51}+2 q^{50}+12 q^{49}+9 q^{48}+3 q^{47}-3 q^{46}-5 q^{45}-8 q^{44}-3 q^{43}+q^{42}+5 q^{41}+4 q^{40}+5 q^{39}-q^{38}-3 q^{37}-5 q^{36}-4 q^{35}+5 q^{33}+3 q^{32}+3 q^{31}-q^{30}-4 q^{29}-3 q^{28}+2 q^{27}+2 q^{25}+2 q^{24}-q^{23}-2 q^{22}+q^{21}+q^{18}-q^{16}+q^{15} }[/math] |
| 6 | [math]\displaystyle{ q^{183}+2 q^{181}-2 q^{179}-4 q^{178}-4 q^{177}-3 q^{176}+q^{175}+10 q^{174}+9 q^{173}+8 q^{172}-q^{171}-7 q^{170}-25 q^{169}-23 q^{168}-q^{167}+14 q^{166}+37 q^{165}+38 q^{164}+33 q^{163}-28 q^{162}-65 q^{161}-63 q^{160}-45 q^{159}+27 q^{158}+88 q^{157}+136 q^{156}+42 q^{155}-58 q^{154}-131 q^{153}-156 q^{152}-60 q^{151}+83 q^{150}+227 q^{149}+151 q^{148}+16 q^{147}-138 q^{146}-234 q^{145}-161 q^{144}+27 q^{143}+247 q^{142}+211 q^{141}+87 q^{140}-101 q^{139}-245 q^{138}-204 q^{137}-20 q^{136}+228 q^{135}+215 q^{134}+111 q^{133}-76 q^{132}-230 q^{131}-205 q^{130}-29 q^{129}+216 q^{128}+203 q^{127}+106 q^{126}-73 q^{125}-220 q^{124}-197 q^{123}-25 q^{122}+211 q^{121}+192 q^{120}+103 q^{119}-68 q^{118}-208 q^{117}-190 q^{116}-33 q^{115}+193 q^{114}+178 q^{113}+110 q^{112}-43 q^{111}-180 q^{110}-182 q^{109}-60 q^{108}+145 q^{107}+154 q^{106}+126 q^{105}+5 q^{104}-129 q^{103}-167 q^{102}-100 q^{101}+70 q^{100}+110 q^{99}+135 q^{98}+65 q^{97}-52 q^{96}-127 q^{95}-126 q^{94}-12 q^{93}+37 q^{92}+110 q^{91}+102 q^{90}+30 q^{89}-50 q^{88}-104 q^{87}-62 q^{86}-41 q^{85}+38 q^{84}+80 q^{83}+69 q^{82}+28 q^{81}-32 q^{80}-43 q^{79}-68 q^{78}-29 q^{77}+12 q^{76}+37 q^{75}+49 q^{74}+23 q^{73}+14 q^{72}-29 q^{71}-33 q^{70}-28 q^{69}-16 q^{68}+14 q^{67}+14 q^{66}+32 q^{65}+13 q^{64}+4 q^{63}-11 q^{62}-22 q^{61}-8 q^{60}-17 q^{59}+7 q^{58}+8 q^{57}+15 q^{56}+8 q^{55}+6 q^{53}-16 q^{52}-4 q^{51}-7 q^{50}+q^{49}-q^{48}+2 q^{47}+14 q^{46}-3 q^{45}+4 q^{44}-3 q^{43}-q^{42}-8 q^{41}-5 q^{40}+7 q^{39}-2 q^{38}+5 q^{37}+2 q^{36}+3 q^{35}-4 q^{34}-4 q^{33}+3 q^{32}-3 q^{31}+q^{30}+q^{29}+3 q^{28}-q^{27}-2 q^{26}+2 q^{25}-q^{24}+q^{21}-q^{19}+q^{18} }[/math] |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




