|
|
| Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Torus_Knot_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Torus_Knot_Splice_Base]]. Please do not edit! |
| ⚫ |
|
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus_Knot_Splice_Base]]. --> |
|
⚫ |
|
|
|
<!-- --> |
|
|
<!-- WARNING! WARNING! WARNING! |
|
|
<!-- This page was generated from the splice template [[Torus Knot Splice Template]]. Please do not edit! |
|
|
<!-- Almost certainly, you want to edit [[Template:Torus Knot Page]], which actually produces this page. |
|
|
<!-- The text below simply calls [[Template:Torus Knot Page]] setting the values of all the parameters appropriately. |
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus Knot Splice Template]]. --> |
|
|
<!-- --> |
|
{{Torus Knot Page| |
|
{{Torus Knot Page| |
|
m = 9 | |
|
m = 9 | |
Latest revision as of 10:38, 31 August 2005
Edit T(9,2) Further Notes and Views
Knot presentations
| Planar diagram presentation
|
X7,17,8,16 X17,9,18,8 X9,1,10,18 X1,11,2,10 X11,3,12,2 X3,13,4,12 X13,5,14,4 X5,15,6,14 X15,7,16,6
|
| Gauss code
|
-4, 5, -6, 7, -8, 9, -1, 2, -3, 4, -5, 6, -7, 8, -9, 1, -2, 3
|
| Dowker-Thistlethwaite code
|
10 12 14 16 18 2 4 6 8
|
Polynomial invariants
Further Quantum Invariants
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["T(9,2)"];
|
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-t^3+t^2-t+1- t^{-1} + t^{-2} - t^{-3} + t^{-4} }[/math]
|
Out[5]=
|
[math]\displaystyle{ z^8+7 z^6+15 z^4+10 z^2+1 }[/math]
|
In[6]:=
|
Alexander[K, 2][t]
|
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math]
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^{13}+q^{12}-q^{11}+q^{10}-q^9+q^8-q^7+q^6+q^4 }[/math]
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8 a^{-8} +8 z^6 a^{-8} -z^6 a^{-10} +21 z^4 a^{-8} -6 z^4 a^{-10} +20 z^2 a^{-8} -10 z^2 a^{-10} +5 a^{-8} -4 a^{-10} }[/math]
|
In[10]:=
|
Kauffman[K][a, z]
|
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^8 a^{-8} +z^8 a^{-10} +z^7 a^{-9} +z^7 a^{-11} -8 z^6 a^{-8} -7 z^6 a^{-10} +z^6 a^{-12} -6 z^5 a^{-9} -5 z^5 a^{-11} +z^5 a^{-13} +21 z^4 a^{-8} +16 z^4 a^{-10} -4 z^4 a^{-12} +z^4 a^{-14} +10 z^3 a^{-9} +6 z^3 a^{-11} -3 z^3 a^{-13} +z^3 a^{-15} -20 z^2 a^{-8} -14 z^2 a^{-10} +3 z^2 a^{-12} -2 z^2 a^{-14} +z^2 a^{-16} -4 z a^{-9} -z a^{-11} +z a^{-13} -z a^{-15} +z a^{-17} +5 a^{-8} +4 a^{-10} }[/math]
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{9_1,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]):
{9_1,}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["T(9,2)"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-t^3+t^2-t+1- t^{-1} + t^{-2} - t^{-3} + t^{-4} }[/math], [math]\displaystyle{ -q^{13}+q^{12}-q^{11}+q^{10}-q^9+q^8-q^7+q^6+q^4 }[/math] }
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
| V2,1 through V6,9:
|
| V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
| Data:T(9,2)/V 2,1
|
Data:T(9,2)/V 3,1
|
Data:T(9,2)/V 4,1
|
Data:T(9,2)/V 4,2
|
Data:T(9,2)/V 4,3
|
Data:T(9,2)/V 5,1
|
Data:T(9,2)/V 5,2
|
Data:T(9,2)/V 5,3
|
Data:T(9,2)/V 5,4
|
Data:T(9,2)/V 6,1
|
Data:T(9,2)/V 6,2
|
Data:T(9,2)/V 6,3
|
Data:T(9,2)/V 6,4
|
Data:T(9,2)/V 6,5
|
Data:T(9,2)/V 6,6
|
Data:T(9,2)/V 6,7
|
Data:T(9,2)/V 6,8
|
Data:T(9,2)/V 6,9
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]8 is the signature of T(9,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | χ |
| 27 | | | | | | | | | | 1 | -1 |
| 25 | | | | | | | | | | | 0 |
| 23 | | | | | | | | 1 | 1 | | 0 |
| 21 | | | | | | | | | | | 0 |
| 19 | | | | | | 1 | 1 | | | | 0 |
| 17 | | | | | | | | | | | 0 |
| 15 | | | | 1 | 1 | | | | | | 0 |
| 13 | | | | | | | | | | | 0 |
| 11 | | | 1 | | | | | | | | 1 |
| 9 | 1 | | | | | | | | | | 1 |
| 7 | 1 | | | | | | | | | | 1 |
|
| Integral Khovanov Homology
(db, data source)
|
|
| [math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math]
|
[math]\displaystyle{ i=7 }[/math]
|
[math]\displaystyle{ i=9 }[/math]
|
| [math]\displaystyle{ r=0 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
| [math]\displaystyle{ r=1 }[/math]
|
|
|
| [math]\displaystyle{ r=2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
|
| [math]\displaystyle{ r=3 }[/math]
|
[math]\displaystyle{ {\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
| [math]\displaystyle{ r=4 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
|
| [math]\displaystyle{ r=5 }[/math]
|
[math]\displaystyle{ {\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
| [math]\displaystyle{ r=6 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
|
| [math]\displaystyle{ r=7 }[/math]
|
[math]\displaystyle{ {\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
| [math]\displaystyle{ r=8 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
|
| [math]\displaystyle{ r=9 }[/math]
|
[math]\displaystyle{ {\mathbb Z}_2 }[/math]
|
[math]\displaystyle{ {\mathbb Z} }[/math]
|
|