5 1
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} &id=Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} 5 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]), as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2). When taken off the post the strangle knot (hitch) of practical knot tying deforms to 5_1 |
![]() The VISA Interlink Logo [1] |
![]() Version of the US bicentennial emblem | |
![]() A pentagonal table by Bob Mackay [2] |
||
![]() Partial view of US bicentennial logo on a shirt seen in Lisboa [3] | ||
This sentence was last edited by Dror. Sometime later, Scott added this sentence.
Knot presentations
Planar diagram presentation | X1627 X3849 X5,10,6,1 X7283 X9,4,10,5 |
Gauss code | -1, 4, -2, 5, -3, 1, -4, 2, -5, 3 |
Dowker-Thistlethwaite code | 6 8 10 2 4 |
Conway Notation | [5] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||
Length is 5, width is 2, Braid index is 2 |
![]() |
![]() [{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}] |
[edit Notes on presentations of 5 1]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3849 X5,10,6,1 X7283 X9,4,10,5 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -2, 5, -3, 1, -4, 2, -5, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 10 2 4 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[5] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(2,\{-1,-1,-1,-1,-1\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 2, 5, 2 } |
In[11]:=
|
Show[BraidPlot[br]]
|
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
![]() |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
![]() |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+ t^{-2} -t- t^{-1} +1} |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+3 z^2+1} |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 5, -4 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
8 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{96}-q^{94}-2 q^{92}-2 q^{90}-q^{88}+q^{86}+3 q^{84}+4 q^{82}+5 q^{80}+4 q^{78}+4 q^{76}+2 q^{74}+q^{72}-q^{70}-2 q^{68}-3 q^{66}-4 q^{64}-5 q^{62}-5 q^{60}-5 q^{58}-4 q^{56}-3 q^{54}-2 q^{52}-q^{50}+q^{42}+q^{40}+2 q^{38}+2 q^{36}+3 q^{34}+3 q^{32}+4 q^{30}+3 q^{28}+3 q^{26}+2 q^{24}+2 q^{22}+q^{20}+q^{18}} |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{50}-q^{36}-2 q^{34}-3 q^{32}-3 q^{30}-2 q^{28}-q^{26}+2 q^{24}+3 q^{22}+4 q^{20}+3 q^{18}+3 q^{16}+q^{14}+q^{12}} |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{29}-q^{27}-2 q^{25}-q^{23}+q^{19}+2 q^{17}+2 q^{15}+2 q^{13}+q^{11}+q^9} |
1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}+q^{58}+q^{56}+3 q^{54}+3 q^{52}+2 q^{50}-q^{48}-5 q^{46}-9 q^{44}-12 q^{42}-12 q^{40}-9 q^{38}-3 q^{36}+2 q^{34}+7 q^{32}+10 q^{30}+11 q^{28}+10 q^{26}+7 q^{24}+5 q^{22}+2 q^{20}+q^{18}} |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{64}+q^{62}+q^{60}+q^{58}+q^{56}-q^{50}-2 q^{48}-4 q^{46}-5 q^{44}-6 q^{42}-6 q^{40}-4 q^{38}-q^{36}+2 q^{34}+4 q^{32}+7 q^{30}+6 q^{28}+6 q^{26}+4 q^{24}+3 q^{22}+q^{20}+q^{18}} |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{36}-q^{34}-2 q^{32}-2 q^{30}-q^{28}+q^{24}+2 q^{22}+3 q^{20}+2 q^{18}+2 q^{16}+q^{14}+q^{12}} |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{50}-q^{36}-q^{32}-q^{30}+q^{26}+q^{22}+2 q^{20}+q^{18}+q^{16}+q^{14}+q^{12}} |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-q^{58}-q^{56}-q^{54}-q^{52}-2 q^{50}-q^{48}-q^{46}-q^{44}+q^{38}+q^{36}+2 q^{34}+q^{32}+2 q^{30}+q^{28}+2 q^{26}+q^{24}+q^{22}+q^{18}} |
B3 Invariants.
Weight | Invariant |
---|---|
1,0,0 |
B4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{160}-q^{114}-q^{110}-2 q^{106}-q^{104}-2 q^{102}-q^{100}-2 q^{98}-q^{96}-2 q^{94}-q^{92}-2 q^{90}-q^{88}-q^{86}+q^{78}+2 q^{74}+q^{72}+3 q^{70}+q^{68}+3 q^{66}+q^{64}+3 q^{62}+q^{60}+3 q^{58}+q^{56}+2 q^{54}+2 q^{50}+q^{46}+q^{42}} |
C3 Invariants.
Weight | Invariant |
---|---|
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{70}-q^{50}-q^{48}-q^{46}-q^{44}-q^{42}-q^{40}+q^{34}+q^{32}+2 q^{30}+2 q^{28}+2 q^{26}+q^{24}+2 q^{22}+q^{20}+q^{18}} |
C4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{90}-q^{64}-q^{62}-2 q^{60}-q^{58}-q^{56}-q^{54}-q^{52}-q^{50}-q^{48}+q^{44}+2 q^{42}+2 q^{40}+2 q^{38}+2 q^{36}+2 q^{34}+2 q^{32}+2 q^{30}+2 q^{28}+q^{26}+q^{24}} |
D4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{120}-q^{100}-q^{98}-3 q^{96}-3 q^{94}-q^{92}-q^{90}+2 q^{88}+6 q^{86}+9 q^{84}+11 q^{82}+14 q^{80}+11 q^{78}+9 q^{76}+3 q^{74}-4 q^{72}-12 q^{70}-18 q^{68}-24 q^{66}-27 q^{64}-27 q^{62}-24 q^{60}-17 q^{58}-11 q^{56}+7 q^{52}+14 q^{50}+19 q^{48}+22 q^{46}+19 q^{44}+19 q^{42}+14 q^{40}+10 q^{38}+6 q^{36}+4 q^{34}+q^{32}+q^{30}} |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{70}-q^{50}-q^{48}-3 q^{46}-3 q^{44}-3 q^{42}-3 q^{40}-2 q^{38}+q^{34}+3 q^{32}+4 q^{30}+4 q^{28}+4 q^{26}+3 q^{24}+2 q^{22}+q^{20}+q^{18}} |
G2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{240}-q^{198}-q^{192}+q^{178}+q^{176}+q^{172}+2 q^{170}+q^{168}+q^{166}+q^{164}+q^{162}+2 q^{160}+q^{158}+q^{154}+q^{152}-q^{148}-q^{146}-q^{144}-q^{142}-2 q^{140}-3 q^{138}-2 q^{136}-2 q^{134}-3 q^{132}-4 q^{130}-4 q^{128}-3 q^{126}-3 q^{124}-4 q^{122}-4 q^{120}-3 q^{118}-2 q^{116}-2 q^{114}-3 q^{112}-2 q^{110}+q^{102}+q^{100}+2 q^{98}+3 q^{96}+2 q^{94}+2 q^{92}+4 q^{90}+3 q^{88}+3 q^{86}+4 q^{84}+3 q^{82}+3 q^{80}+4 q^{78}+2 q^{76}+2 q^{74}+3 q^{72}+2 q^{70}+q^{68}+2 q^{66}+q^{64}+q^{62}+q^{60}+q^{54}} |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{120}-q^{100}-q^{98}-q^{92}-q^{90}-q^{88}-q^{82}-q^{80}-q^{78}-q^{72}+q^{58}+q^{56}+q^{52}+2 q^{50}+q^{48}+q^{46}+q^{44}+q^{42}+2 q^{40}+q^{38}+q^{34}+q^{32}+q^{30}} |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+ t^{-2} -t- t^{-1} +1} |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {[[0_1]], [[K11n34]], [[K11n42]], }
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+ t^{-2} -t- t^{-1} +1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-7} + q^{-6} - q^{-5} + q^{-4} + q^{-2} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{[[0_1]], [[K11n34]], [[K11n42]], } |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (3, -5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -4 is the signature of 5 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left( \begin{array}{ccccccccc} q & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & q^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & q^3 & 0 & 0 \\ 0 & q^2 & 0 & q-q^3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & q^2 & 0 & -(q-1) \left(q^{5/4}+\sqrt[4]{q}\right)^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^2 & 0 \\ 0 & 0 & q^3 & 0 & q^{5/2}-q^{7/2} & 0 & (q-1)^2 q (q+1) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & q^2 & 0 & q-q^3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q \end{array} \right),\left( \begin{array}{ccccccccc} \frac{1}{q} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{q^2-1}{q^3} & 0 & \frac{1}{q^2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{(q-1)^2 (q+1)}{q^4} & 0 & \frac{q-1}{q^{5/2}} & 0 & \frac{1}{q^3} & 0 & 0 \\ 0 & \frac{1}{q^2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{(q-1) (q+1)^2}{q^{9/2}} & 0 & \frac{1}{q^2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^3} & 0 & \frac{1}{q^2} & 0 \\ 0 & 0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{q^2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q} \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & \frac{1}{\sqrt{q}} \\ 0 & 1 & 0 \\ \sqrt{q} & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & \frac{1}{\sqrt{q}} \\ 0 & 1 & 0 \\ \sqrt{q} & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & \frac{1}{\sqrt{q}} \\ 0 & 1 & 0 \\ \sqrt{q} & 0 & 0 \end{array} \right),\left( \begin{array}{ccc} 0 & 0 & \frac{1}{\sqrt{q}} \\ 0 & 1 & 0 \\ \sqrt{q} & 0 & 0 \end{array} \right)\right)\right]}{q+\frac{1}{q}+1}\right]} |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left( \begin{array}{cccccccccccccccc} q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & q^3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 \\ 0 & q^3 & 0 & 0 & q^{3/2}-q^{9/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & q^{7/2} & 0 & 0 & -q^{3/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & -(q-1) q^{3/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} & 0 & 0 \\ 0 & 0 & q^{9/2} & 0 & 0 & q^{7/2}-q^{11/2} & 0 & 0 & q^{13/2}-q^{9/2}-q^{7/2}+q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & -(q-1) q^{5/2} (q+1)^2 & 0 & 0 & (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2} & 0 & 0 & -q^{3/2} (q+1) \left(q^3-1\right) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^3 & 0 \\ 0 & 0 & 0 & q^6 & 0 & 0 & q^{11/2}-q^{13/2} & 0 & 0 & (q-1)^2 q^4 (q+1) & 0 & 0 & -(q-1)^3 q^{3/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} & 0 & 0 & q^{7/2}-q^{11/2} & 0 & 0 & q^{13/2}-q^{9/2}-q^{7/2}+q^{3/2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^3 & 0 & 0 & q^{3/2}-q^{9/2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{3/2} \end{array} \right),\left( \begin{array}{cccccccccccccccc} \frac{1}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{q^3-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{13/2}} & 0 & 0 & \frac{q^2-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{15/2}} & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^5} & 0 & 0 & \frac{q-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 \\ 0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{13/2}} & 0 & 0 & \frac{1}{q^{7/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^9} & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{11/2}} & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{13/2}} & 0 & 0 & \frac{q^2-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 \\ 0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{17/2}} & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{13/2}} & 0 & 0 & \frac{1}{q^{7/2}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^3} & 0 \\ 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/2}} \end{array} \right),\left( \begin{array}{cccc} 0 & 0 & 0 & \frac{1}{q^{3/4}} \\ 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\ 0 & \sqrt[4]{q} & 0 & 0 \\ q^{3/4} & 0 & 0 & 0 \end{array} \right),\left( \begin{array}{cccc} 0 & 0 & 0 & \frac{1}{q^{3/4}} \\ 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\ 0 & \sqrt[4]{q} & 0 & 0 \\ q^{3/4} & 0 & 0 & 0 \end{array} \right),\left( \begin{array}{cccc} 0 & 0 & 0 & \frac{1}{q^{3/4}} \\ 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\ 0 & \sqrt[4]{q} & 0 & 0 \\ q^{3/4} & 0 & 0 & 0 \end{array} \right),\left( \begin{array}{cccc} 0 & 0 & 0 & \frac{1}{q^{3/4}} \\ 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\ 0 & \sqrt[4]{q} & 0 & 0 \\ q^{3/4} & 0 & 0 & 0 \end{array} \right)\right)\right]}{q^{3/2}+\sqrt{q}+\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}}\right]} |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left( \begin{array}{ccccccccccccccccccccccccc} q^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 \\ 0 & q^4 & 0 & 0 & 0 & q^2-q^6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & -q^{15/2}-q^{13/2}+q^{7/2}+q^{5/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^3 \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 & 0 & 0 & -(q-1) q^{7/2} \left(q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 \\ 0 & 0 & q^6 & 0 & 0 & 0 & q^{9/2}-q^{15/2} & 0 & 0 & 0 & q^9-q^6-q^5+q^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^4 (q+1) \left(q^3-1\right) & 0 & 0 & 0 & q \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -(q-1) q^{7/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 & (q+1) \left(q^5+q^3-q^2-1\right)^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^3 \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 \\ 0 & 0 & 0 & q^8 & 0 & 0 & 0 & q^7-q^9 & 0 & 0 & 0 & q^{10}-q^8-q^7+q^5 & 0 & 0 & 0 & -(q-1)^3 q^2 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 & 0 & 0 & -(q-1) q^{11/2} (q+1)^2 & 0 & 0 & 0 & q^3 (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 & -\frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{\sqrt{q}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^4 (q+1) \left(q^3-1\right) & 0 & 0 & 0 & q \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & -q^{15/2}-q^{13/2}+q^{7/2}+q^{5/2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 \\ 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & q^{19/2}-q^{21/2} & 0 & 0 & 0 & (q-1)^2 q^8 (q+1) & 0 & 0 & 0 & -(q-1)^3 q^{11/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 & (q-1)^4 q^2 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & q^7-q^9 & 0 & 0 & 0 & q^{10}-q^8-q^7+q^5 & 0 & 0 & 0 & -(q-1)^3 q^2 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & q^{9/2}-q^{15/2} & 0 & 0 & 0 & q^9-q^6-q^5+q^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & 0 & q^2-q^6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^2 \end{array} \right),\left( \begin{array}{ccccccccccccccccccccccccc} \frac{1}{q^2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{q^4-1}{q^6} & 0 & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{q^7-q^4-q^3+1}{q^9} & 0 & 0 & 0 & \frac{q^3-1}{q^{13/2}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{11}} & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^8} & 0 & 0 & 0 & \frac{q^2-1}{q^7} & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{12}} & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{17/2}} & 0 & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^7} & 0 & 0 & 0 & \frac{q-1}{q^{15/2}} & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{q^5+q^4-q-1}{q^{17/2}} & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{12}} & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^8} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{q^{29/2}} & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^{10}} & 0 & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{15/2}} & 0 & 0 & 0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{11}} & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^8} & 0 & 0 & 0 & \frac{q^2-1}{q^7} & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{11}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5+q^3-q^2-1\right)^2}{q^{15}} & 0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{19/2}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{12}} & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^8} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^9} & 0 & 0 & 0 & \frac{q^3-1}{q^{13/2}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^3+q^2+q+1\right)^2}{q^{27/2}} & 0 & 0 & 0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{11}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{17/2}} & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^6} & 0 & 0 & 0 & \frac{1}{q^4} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^2} \end{array} \right),\left( \begin{array}{ccccc} 0 & 0 & 0 & 0 & \frac{1}{q} \\ 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \sqrt{q} & 0 & 0 & 0 \\ q & 0 & 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccccc} 0 & 0 & 0 & 0 & \frac{1}{q} \\ 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \sqrt{q} & 0 & 0 & 0 \\ q & 0 & 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccccc} 0 & 0 & 0 & 0 & \frac{1}{q} \\ 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \sqrt{q} & 0 & 0 & 0 \\ q & 0 & 0 & 0 & 0 \end{array} \right),\left( \begin{array}{ccccc} 0 & 0 & 0 & 0 & \frac{1}{q} \\ 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \sqrt{q} & 0 & 0 & 0 \\ q & 0 & 0 & 0 & 0 \end{array} \right)\right)\right]}{q^2+q+1+\frac{1}{q}+\frac{1}{q^2}}\right]} |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left( \begin{array}{cccccccccccccccccccccccccccccccccccc} q^{5/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 \\ 0 & q^5 & 0 & 0 & 0 & 0 & q^{5/2}-q^{15/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{13/2} & 0 & 0 & 0 & 0 & -q^{7/2} (q+1) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{9/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{11} & 0 & 0 & 0 & 0 & -(q-1) q^{13/2} \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 \\ 0 & 0 & q^{15/2} & 0 & 0 & 0 & 0 & q^{11/2}-q^{19/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{15/2}-q^{13/2}+q^{5/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{21/2}-q^{19/2}+q^{13/2}+q^{11/2} & 0 & 0 & 0 & 0 & (q-1)^2 q^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & (q-1)^2 q^{3/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 & 0 & 0 & -(q-1) q^{11/2} \left(q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & q (q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 \\ 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & q^{17/2}-q^{23/2} & 0 & 0 & 0 & 0 & q^{13}-q^{10}-q^9+q^6 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{15/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & q^{9/2} \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & -(q-1)^3 \left(q^2+q+1\right) \left(q^{13/4}+q^{9/4}+q^{5/4}+\sqrt[4]{q}\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 & 0 & 0 & -(q-1) q^{13/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & q^3 (q+1) \left(q^5+q^3-q^2-1\right)^2 & 0 & 0 & 0 & 0 & -\frac{(q-1)^3 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & (q-1)^2 q^{3/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{9/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} & 0 & 0 \\ 0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{27/2} & 0 & 0 & 0 & 0 & q^{29/2}-q^{25/2}-q^{23/2}+q^{19/2} & 0 & 0 & 0 & 0 & -(q-1)^3 q^{13/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & (q-1)^4 q^{5/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{11} & 0 & 0 & 0 & 0 & -(q-1) q^{19/2} (q+1)^2 & 0 & 0 & 0 & 0 & q^7 (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 & 0 & -q^{7/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{15/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & q^{9/2} \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & -(q-1)^3 \left(q^2+q+1\right) \left(q^{13/4}+q^{9/4}+q^{5/4}+\sqrt[4]{q}\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{21/2}-q^{19/2}+q^{13/2}+q^{11/2} & 0 & 0 & 0 & 0 & (q-1)^2 q^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{13/2} & 0 & 0 & 0 & 0 & -q^{7/2} (q+1) \left(q^5-1\right) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 \\ 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & q^{29/2}-q^{31/2} & 0 & 0 & 0 & 0 & (q-1)^2 q^{13} (q+1) & 0 & 0 & 0 & 0 & -(q-1)^3 q^{21/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & (q-1)^4 q^7 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & -(q-1)^5 q^{5/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{27/2} & 0 & 0 & 0 & 0 & q^{29/2}-q^{25/2}-q^{23/2}+q^{19/2} & 0 & 0 & 0 & 0 & -(q-1)^3 q^{13/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & (q-1)^4 q^{5/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & q^{17/2}-q^{23/2} & 0 & 0 & 0 & 0 & q^{13}-q^{10}-q^9+q^6 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} & 0 & 0 & 0 & 0 & q^{11/2}-q^{19/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{15/2}-q^{13/2}+q^{5/2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & 0 & q^{5/2}-q^{15/2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{5/2} \end{array} \right),\left( \begin{array}{cccccccccccccccccccccccccccccccccccc} \frac{1}{q^{5/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{q^5-1}{q^{15/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{17/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{29/2}} & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{11}} & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{19/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{35/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{13}} & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^{10}} & 0 & 0 & 0 & 0 & \frac{q-1}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{13/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{21}} & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{q^{31/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^{12}} & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{17/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{45/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5+q^3-q^2-1\right)^2}{q^{16}} & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{29/2}} & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{11}} & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{19/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2}{q^{22}} & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^3+q^2+q+1\right)^2}{q^{29/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{17/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{17/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^4+q^3+q^2+q+1\right)^2}{q^{39/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{13/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-1}{q^{15/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^5} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/2}} \end{array} \right),\left( \begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\ 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\ 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\ 0 & q^{3/4} & 0 & 0 & 0 & 0 \\ q^{5/4} & 0 & 0 & 0 & 0 & 0 \end{array} \right),\left( \begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\ 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\ 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\ 0 & q^{3/4} & 0 & 0 & 0 & 0 \\ q^{5/4} & 0 & 0 & 0 & 0 & 0 \end{array} \right),\left( \begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\ 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\ 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\ 0 & q^{3/4} & 0 & 0 & 0 & 0 \\ q^{5/4} & 0 & 0 & 0 & 0 & 0 \end{array} \right),\left( \begin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\ 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\ 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\ 0 & q^{3/4} & 0 & 0 & 0 & 0 \\ q^{5/4} & 0 & 0 & 0 & 0 & 0 \end{array} \right)\right)\right]}{q^{5/2}+q^{3/2}+\sqrt{q}+\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}+\frac{1}{q^{5/2}}}\right]} |
6 | Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: MathJax internal buffer size exceeded; is there a recursive macro call?"): {\displaystyle {\textrm {Apart}}\left[{\frac {{\textrm {Hold}}\left[{\textrm {REngine}}\left({\textrm {MorseLink}}({\textrm {MorseLink::Error:badinput}}),\left({\begin{array}{ccccccccccccccccccccccccccccccccccccccccccccccccc}q^{3}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&q^{6}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{9}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{18}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21}&0&0&0&0&0&0\\0&q^{6}&0&0&0&0&0&q^{3}-q^{9}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&q^{8}&0&0&0&0&0&-q^{23/2}-q^{21/2}+q^{11/2}+q^{9/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{10}&0&0&0&0&0&-q^{6}\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{15/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&-q^{9}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{16}&0&0&0&0&0&-(q-1)q^{21/2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{18}&0&0&0&0&0\\0&0&q^{9}&0&0&0&0&0&q^{13/2}-q^{23/2}&0&0&0&0&0&q^{14}-q^{9}-q^{8}+q^{3}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&q^{10}&0&0&0&0&0&-q^{7}(q+1)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{11}&0&0&0&0&0&-q^{15/2}\left(q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{8}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{13}&0&0&0&0&0&-(q-1)q^{17/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&q^{3}(q+1)\left(q^{9}+q^{7}+q^{5}-q^{4}-q^{2}-1\right)^{2}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&-q^{9}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0\\0&0&0&q^{12}&0&0&0&0&0&q^{10}-q^{14}&0&0&0&0&0&q^{16}-q^{12}-q^{11}+q^{7}&0&0&0&0&0&-q^{3}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{29/2}-q^{27/2}+q^{21/2}+q^{19/2}&0&0&0&0&0&(q-1)^{2}q^{6}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-q^{3/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{9}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0&0&0&(q-1)^{2}q^{5}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-(q-1)q^{17/2}\left(q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&q^{4}(q+1)\left(q^{2}+1\right)^{2}\left(q^{5}-1\right)^{2}&0&0&0&0&0&-{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+q+1\right)\left(q^{8}+2q^{6}+q^{5}+2q^{4}+q^{3}+2q^{2}+1\right)^{2}}{q^{3/2}}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{8}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{15/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0\\0&0&0&0&q^{15}&0&0&0&0&0&q^{27/2}-q^{33/2}&0&0&0&0&0&q^{18}-q^{15}-q^{14}+q^{11}&0&0&0&0&0&-q^{15/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&-q^{12}(q+1)\left(q^{3}-1\right)&0&0&0&0&0&q^{9}\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{3}q^{5}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{13}&0&0&0&0&0&-(q-1)q^{21/2}\left(q^{2}+q+1\right)^{2}&0&0&0&0&0&q^{7}(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}&0&0&0&0&0&-(q-1)^{3}q^{5/2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{3}}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{9}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0&0&0&(q-1)^{2}q^{5}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{11}&0&0&0&0&0&-q^{15/2}\left(q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{10}&0&0&0&0&0&-q^{6}\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{9}&0&0\\0&0&0&0&0&q^{18}&0&0&0&0&0&q^{17}-q^{19}&0&0&0&0&0&q^{20}-q^{18}-q^{17}+q^{15}&0&0&0&0&0&-(q-1)^{3}q^{12}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}q^{8}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{5}q^{3}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&q^{16}&0&0&0&0&0&-(q-1)q^{29/2}(q+1)^{2}&0&0&0&0&0&q^{12}(q+1)\left(q^{3}-1\right)^{2}&0&0&0&0&0&-q^{17/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}q^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&-{\frac {(q-1)^{5}(q+1)^{4}\left(q^{2}+1\right)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)^{3}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{3/2}}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&-q^{12}(q+1)\left(q^{3}-1\right)&0&0&0&0&0&q^{9}\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{3}q^{5}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{29/2}-q^{27/2}+q^{21/2}+q^{19/2}&0&0&0&0&0&(q-1)^{2}q^{6}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-q^{3/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{10}&0&0&0&0&0&-q^{7}(q+1)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{8}&0&0&0&0&0&-q^{23/2}-q^{21/2}+q^{11/2}+q^{9/2}&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{6}&0\\0&0&0&0&0&0&q^{21}&0&0&0&0&0&q^{41/2}-q^{43/2}&0&0&0&0&0&(q-1)^{2}q^{19}(q+1)&0&0&0&0&0&-(q-1)^{3}q^{33/2}(q+1)\left(q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}q^{13}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{5}q^{17/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{6}q^{3}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&q^{18}&0&0&0&0&0&q^{17}-q^{19}&0&0&0&0&0&q^{20}-q^{18}-q^{17}+q^{15}&0&0&0&0&0&-(q-1)^{3}q^{12}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}q^{8}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{5}q^{3}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&q^{27/2}-q^{33/2}&0&0&0&0&0&q^{18}-q^{15}-q^{14}+q^{11}&0&0&0&0&0&-q^{15/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&q^{10}-q^{14}&0&0&0&0&0&q^{16}-q^{12}-q^{11}+q^{7}&0&0&0&0&0&-q^{3}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{9}&0&0&0&0&0&q^{13/2}-q^{23/2}&0&0&0&0&0&q^{14}-q^{9}-q^{8}+q^{3}&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{6}&0&0&0&0&0&q^{3}-q^{9}&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{3}\end{array}}\right),\left({\begin{array}{ccccccccccccccccccccccccccccccccccccccccccccccccc}{\frac {1}{q^{3}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&{\frac {q^{6}-1}{q^{9}}}&0&0&0&0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {q^{11}-q^{6}-q^{5}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{5}-1}{q^{21/2}}}&0&0&0&0&0&{\frac {1}{q^{9}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{16}}}&0&0&0&0&0&{\frac {q^{9}-q^{5}-q^{4}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{4}-1}{q^{12}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{21}}}&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)}{q^{33/2}}}&0&0&0&0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{3}-1}{q^{27/2}}}&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{23}}}&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{18}}}&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{15}}}&0&0&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{2}-1}{q^{15}}}&0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{6}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{24}}}&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{37/2}}}&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{15}}}&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}+q+1\right)}{q^{27/2}}}&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)}{q^{14}}}&0&0&0&0&0&{\frac {q-1}{q^{33/2}}}&0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0&0\\0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {q^{7}+q^{6}-q-1}{q^{25/2}}}&0&0&0&0&0&{\frac {1}{q^{8}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{18}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{5}-1\right)}{q^{13}}}&0&0&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{17}}}&0&0&0&0&0&{\frac {q^{5}+q^{4}-q-1}{q^{27/2}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{26}}}&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{16}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{14}}}&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{4}\left(q^{2}+1\right)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)^{3}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{57/2}}}&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{22}}}&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)}{q^{35/2}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)^{2}}{q^{15}}}&0&0&0&0&0&{\frac {(q-1)(q+1)^{2}}{q^{29/2}}}&0&0&0&0&0&{\frac {1}{q^{16}}}&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{23}}}&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{18}}}&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{15}}}&0&0&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{2}-1}{q^{15}}}&0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0\\0&0&{\frac {1}{q^{9}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)}{q^{16}}}&0&0&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{22}}}&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{31/2}}}&0&0&0&0&0&{\frac {1}{q^{11}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{27}}}&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{15}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{31}}}&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{47/2}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}}{q^{18}}}&0&0&0&0&0&{\frac {(q-1)\left(q^{2}+q+1\right)^{2}}{q^{29/2}}}&0&0&0&0&0&{\frac {1}{q^{13}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{26}}}&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{16}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{14}}}&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{21}}}&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)}{q^{33/2}}}&0&0&0&0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{3}-1}{q^{27/2}}}&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0\\0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {(q-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{2}+1\right)}{q^{39/2}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{26}}}&0&0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{18}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+q+1\right)\left(q^{8}+2q^{6}+q^{5}+2q^{4}+q^{3}+2q^{2}+1\right)^{2}}{q^{63/2}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{2}+1\right)^{2}\left(q^{5}-1\right)^{2}}{q^{23}}}&0&0&0&0&0&{\frac {(q-1)\left(q^{3}+q^{2}+q+1\right)^{2}}{q^{33/2}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{27}}}&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{15}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{17}}}&0&0&0&0&0&{\frac {q^{5}+q^{4}-q-1}{q^{27/2}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{16}}}&0&0&0&0&0&{\frac {q^{9}-q^{5}-q^{4}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{4}-1}{q^{12}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0\\0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)}{q^{23}}}&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q+1)\left(q^{9}+q^{7}+q^{5}-q^{4}-q^{2}-1\right)^{2}}{q^{30}}}&0&0&0&0&0&{\frac {(q-1)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{41/2}}}&0&0&0&0&0&{\frac {1}{q^{13}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{26}}}&0&0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{18}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{22}}}&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{31/2}}}&0&0&0&0&0&{\frac {1}{q^{11}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{18}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{5}-1\right)}{q^{13}}}&0&0&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{11}-q^{6}-q^{5}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{5}-1}{q^{21/2}}}&0&0&0&0&0&{\frac {1}{q^{9}}}&0&0\\0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{53/2}}}&0&0&0&0&0&{\frac {1}{q^{16}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)}{q^{23}}}&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{2}+1\right)}{q^{39/2}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)}{q^{16}}}&0&0&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{7}+q^{6}-q-1}{q^{25/2}}}&0&0&0&0&0&{\frac {1}{q^{8}}}&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{6}-1}{q^{9}}}&0&0&0&0&0&{\frac {1}{q^{6}}}&0\\0&0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{9}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{3}}}\end{array}}\right),\left({\begin{array}{ccccccc}0&0&0&0&0&0&{\frac {1}{q^{3/2}}}\\0&0&0&0&0&{\frac {1}{q}}&0\\0&0&0&0&{\frac {1}{\sqrt {q}}}&0&0\\0&0&0&1&0&0&0\\0&0&{\sqrt {q}}&0&0&0&0\\0&q&0&0&0&0&0\\q^{3/2}&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{ccccccc}0&0&0&0&0&0&{\frac {1}{q^{3/2}}}\\0&0&0&0&0&{\frac {1}{q}}&0\\0&0&0&0&{\frac {1}{\sqrt {q}}}&0&0\\0&0&0&1&0&0&0\\0&0&{\sqrt {q}}&0&0&0&0\\0&q&0&0&0&0&0\\q^{3/2}&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{ccccccc}0&0&0&0&0&0&{\frac {1}{q^{3/2}}}\\0&0&0&0&0&{\frac {1}{q}}&0\\0&0&0&0&{\frac {1}{\sqrt {q}}}&0&0\\0&0&0&1&0&0&0\\0&0&{\sqrt {q}}&0&0&0&0\\0&q&0&0&0&0&0\\q^{3/2}&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{ccccccc}0&0&0&0&0&0&{\frac {1}{q^{3/2}}}\\0&0&0&0&0&{\frac {1}{q}}&0\\0&0&0&0&{\frac {1}{\sqrt {q}}}&0&0\\0&0&0&1&0&0&0\\0&0&{\sqrt {q}}&0&0&0&0\\0&q&0&0&0&0&0\\q^{3/2}&0&0&0&0&0&0\end{array}}\right)\right)\right]}{q^{3}+q^{2}+q+1+{\frac {1}{q}}+{\frac {1}{q^{2}}}+{\frac {1}{q^{3}}}}}\right]} |
7 | Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: MathJax internal buffer size exceeded; is there a recursive macro call?"): {\displaystyle {\textrm {Apart}}\left[{\frac {{\textrm {Hold}}\left[{\textrm {REngine}}\left({\textrm {MorseLink}}({\textrm {MorseLink::Error:badinput}}),\left({\begin{array}{cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc}q^{7/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&q^{7}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{35/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{49/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{28}&0&0&0&0&0&0&0\\0&q^{7}&0&0&0&0&0&0&q^{7/2}-q^{21/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&q^{19/2}&0&0&0&0&0&0&-q^{11/2}(q+1)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&0&-q^{15/2}\left(q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{29/2}&0&0&0&0&0&0&-q^{19/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{17}&0&0&0&0&0&0&-q^{23/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{39/2}&0&0&0&0&0&0&-q^{27/2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{22}&0&0&0&0&0&0&-{\frac {q^{31/2}\left(q^{7}-1\right)^{2}}{q-1}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{49/2}&0&0&0&0&0&0\\0&0&q^{21/2}&0&0&0&0&0&0&q^{15/2}-q^{27/2}&0&0&0&0&0&0&q^{33/2}-q^{21/2}-q^{19/2}+q^{7/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&0&-q^{31/2}-q^{29/2}+q^{19/2}+q^{17/2}&0&0&0&0&0&0&q^{4}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{27/2}&0&0&0&0&0&0&-q^{19/2}\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)&0&0&0&0&0&0&q^{9/2}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&0&-q^{21/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{5}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{33/2}&0&0&0&0&0&0&-q^{23/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{11/2}(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{18}&0&0&0&0&0&0&-(q-1)q^{25/2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&q^{6}(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{7}-1\right)^{2}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{39/2}&0&0&0&0&0&0&-q^{27/2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21}&0&0&0&0&0\\0&0&0&q^{14}&0&0&0&0&0&0&q^{23/2}-q^{33/2}&0&0&0&0&0&0&q^{19}-q^{14}-q^{13}+q^{8}&0&0&0&0&0&0&-q^{43/2}+q^{33/2}+q^{31/2}+q^{29/2}-q^{21/2}-q^{19/2}-q^{17/2}+q^{7/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&q^{29/2}&0&0&0&0&0&0&-q^{23/2}(q+1)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{15/2}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-q^{5/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&0&-q^{23/2}\left(q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{7}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{3/2}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{31/2}&0&0&0&0&0&0&-q^{23/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{13/2}\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}{\sqrt {q}}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{16}&0&0&0&0&0&0&-(q-1)q^{23/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&q^{6}(q+1)\left(q^{9}+q^{7}+q^{5}-q^{4}-q^{2}-1\right)^{2}&0&0&0&0&0&0&-{\frac {(q-1)^{3}(q+1)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{\sqrt {q}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{33/2}&0&0&0&0&0&0&-q^{23/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{11/2}(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{17}&0&0&0&0&0&0&-q^{23/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{35/2}&0&0&0&0\\0&0&0&0&q^{35/2}&0&0&0&0&0&0&q^{31/2}-q^{39/2}&0&0&0&0&0&0&q^{43/2}-q^{35/2}-q^{33/2}+q^{25/2}&0&0&0&0&0&0&-q^{17/2}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&q^{7/2}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&q^{17}&0&0&0&0&0&0&-q^{39/2}-q^{37/2}+q^{31/2}+q^{29/2}&0&0&0&0&0&0&(q-1)^{2}q^{11}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-q^{13/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&q\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)^{2}\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{33/2}&0&0&0&0&0&0&-q^{27/2}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{19/2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{9/2}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{3/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{16}&0&0&0&0&0&0&-(q-1)q^{25/2}\left(q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&q^{8}(q+1)\left(q^{2}+1\right)^{2}\left(q^{5}-1\right)^{2}&0&0&0&0&0&0&-q^{5/2}\left(q^{2}-1\right)^{3}\left(q^{2}+q+1\right)\left(q^{8}+2q^{6}+q^{5}+2q^{4}+q^{3}+2q^{2}+1\right)^{2}&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{4}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{31/2}&0&0&0&0&0&0&-q^{23/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{13/2}\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}{\sqrt {q}}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&0&-q^{21/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{5}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{29/2}&0&0&0&0&0&0&-q^{19/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0\\0&0&0&0&0&q^{21}&0&0&0&0&0&0&q^{39/2}-q^{45/2}&0&0&0&0&0&0&q^{24}-q^{21}-q^{20}+q^{17}&0&0&0&0&0&0&-q^{27/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{9}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&-q^{7/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&q^{39/2}&0&0&0&0&0&0&-q^{35/2}(q+1)\left(q^{3}-1\right)&0&0&0&0&0&0&q^{29/2}\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{21/2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{11/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&-{\frac {q^{3}\left(q^{3/2}-{\frac {1}{q^{3/2}}}\right)\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)^{2}\left(q^{7}-1\right)}{q-1}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{18}&0&0&0&0&0&0&-(q-1)q^{31/2}\left(q^{2}+q+1\right)^{2}&0&0&0&0&0&0&q^{12}(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}&0&0&0&0&0&0&-(q-1)^{3}q^{15/2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&(q-1)^{4}q^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&-{\frac {(q-1)^{5}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{9/2}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{33/2}&0&0&0&0&0&0&-q^{27/2}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{19/2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{9/2}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{3/2}}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&0&-q^{23/2}\left(q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{7}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{3/2}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{27/2}&0&0&0&0&0&0&-q^{19/2}\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)&0&0&0&0&0&0&q^{9/2}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&0&-q^{15/2}\left(q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21/2}&0&0\\0&0&0&0&0&0&q^{49/2}&0&0&0&0&0&0&-q^{47/2}\left(q^{2}-1\right)&0&0&0&0&0&0&q^{53/2}-q^{49/2}-q^{47/2}+q^{43/2}&0&0&0&0&0&0&-(q-1)^{3}q^{37/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{29/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{5}q^{19/2}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{3}q^{7/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{22}&0&0&0&0&0&0&-(q-1)q^{41/2}(q+1)^{2}&0&0&0&0&0&0&q^{18}(q+1)\left(q^{3}-1\right)^{2}&0&0&0&0&0&0&-q^{29/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{10}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&-(q-1)^{5}q^{9/2}(q+1)^{4}\left(q^{2}+1\right)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)^{3}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&{\frac {(q-1)^{6}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{2}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{39/2}&0&0&0&0&0&0&-q^{35/2}(q+1)\left(q^{3}-1\right)&0&0&0&0&0&0&q^{29/2}\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{21/2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{11/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&-{\frac {q^{3}\left(q^{3/2}-{\frac {1}{q^{3/2}}}\right)\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)^{2}\left(q^{7}-1\right)}{q-1}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{17}&0&0&0&0&0&0&-q^{39/2}-q^{37/2}+q^{31/2}+q^{29/2}&0&0&0&0&0&0&(q-1)^{2}q^{11}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-q^{13/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&q\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)^{2}\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{29/2}&0&0&0&0&0&0&-q^{23/2}(q+1)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{15/2}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-q^{5/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&0&-q^{31/2}-q^{29/2}+q^{19/2}+q^{17/2}&0&0&0&0&0&0&q^{4}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{19/2}&0&0&0&0&0&0&-q^{11/2}(q+1)\left(q^{7}-1\right)&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{7}&0\\0&0&0&0&0&0&0&q^{28}&0&0&0&0&0&0&-(q-1)q^{55/2}&0&0&0&0&0&0&(q-1)^{2}q^{26}(q+1)&0&0&0&0&0&0&-(q-1)^{3}q^{47/2}(q+1)\left(q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{20}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{5}q^{31/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{6}q^{10}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{7}q^{7/2}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{49/2}&0&0&0&0&0&0&-q^{47/2}\left(q^{2}-1\right)&0&0&0&0&0&0&q^{53/2}-q^{49/2}-q^{47/2}+q^{43/2}&0&0&0&0&0&0&-(q-1)^{3}q^{37/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{29/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{5}q^{19/2}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{3}q^{7/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21}&0&0&0&0&0&0&q^{39/2}-q^{45/2}&0&0&0&0&0&0&q^{24}-q^{21}-q^{20}+q^{17}&0&0&0&0&0&0&-q^{27/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{9}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&-q^{7/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{35/2}&0&0&0&0&0&0&q^{31/2}-q^{39/2}&0&0&0&0&0&0&q^{43/2}-q^{35/2}-q^{33/2}+q^{25/2}&0&0&0&0&0&0&-q^{17/2}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&q^{7/2}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&0&q^{23/2}-q^{33/2}&0&0&0&0&0&0&q^{19}-q^{14}-q^{13}+q^{8}&0&0&0&0&0&0&-q^{43/2}+q^{33/2}+q^{31/2}+q^{29/2}-q^{21/2}-q^{19/2}-q^{17/2}+q^{7/2}&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21/2}&0&0&0&0&0&0&q^{15/2}-q^{27/2}&0&0&0&0&0&0&q^{33/2}-q^{21/2}-q^{19/2}+q^{7/2}&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{7}&0&0&0&0&0&0&q^{7/2}-q^{21/2}&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{7/2}\end{array}}\right),\left({\begin{array}{cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc}{\frac {1}{q^{7/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&{\frac {q^{7}-1}{q^{21/2}}}&0&0&0&0&0&0&{\frac {1}{q^{7}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {q^{13}-q^{7}-q^{6}+1}{q^{33/2}}}&0&0&0&0&0&0&{\frac {q^{6}-1}{q^{25/2}}}&0&0&0&0&0&0&{\frac {1}{q^{21/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{43/2}}}&0&0&0&0&0&0&{\frac {q^{11}-q^{6}-q^{5}+1}{q^{17}}}&0&0&0&0&0&0&{\frac {q^{5}-1}{q^{29/2}}}&0&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{47/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{9}-q^{5}-q^{4}+1}{q^{35/2}}}&0&0&0&0&0&0&{\frac {q^{4}-1}{q^{33/2}}}&0&0&0&0&0&0&{\frac {1}{q^{35/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{57/2}}}&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{23}}}&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)}{q^{39/2}}}&0&0&0&0&0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{18}}}&0&0&0&0&0&0&{\frac {q^{3}-1}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{61/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{2}-1}{q^{41/2}}}&0&0&0&0&0&0&{\frac {1}{q^{49/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q-1)^{7}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{63/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{6}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{25}}}&0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{18}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}+q+1\right)}{q^{35/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)}{q^{19}}}&0&0&0&0&0&0&{\frac {q-1}{q^{45/2}}}&0&0&0&0&0&0&{\frac {1}{q^{28}}}&0&0&0&0&0&0&0\\0&{\frac {1}{q^{7}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {(q+1)\left(q^{7}-1\right)}{q^{29/2}}}&0&0&0&0&0&0&{\frac {1}{q^{19/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{21}}}&0&0&0&0&0&0&{\frac {q^{7}+q^{6}-q-1}{q^{31/2}}}&0&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{(q-1)q^{49/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{5}-1\right)}{q^{33/2}}}&0&0&0&0&0&0&{\frac {1}{q^{29/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)^{2}\left(q^{6}-1\right)\left(q^{7}-1\right)}{(q-1)q^{29}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&0&{\frac {q^{5}+q^{4}-q-1}{q^{35/2}}}&0&0&0&0&0&0&{\frac {1}{q^{17}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {\left(q^{3/2}-{\frac {1}{q^{3/2}}}\right)\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)^{2}\left(q^{7}-1\right)}{(q-1)q^{31}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{55/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{39/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{39/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q-1)^{6}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{37}}}&0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{4}\left(q^{2}+1\right)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)^{3}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{59/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{24}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)^{2}}{q^{19}}}&0&0&0&0&0&0&{\frac {(q-1)(q+1)^{2}}{q^{39/2}}}&0&0&0&0&0&0&{\frac {1}{q^{22}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{61/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{2}-1}{q^{41/2}}}&0&0&0&0&0&0&{\frac {1}{q^{49/2}}}&0&0&0&0&0&0\\0&0&{\frac {1}{q^{21/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{51/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{27/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{63/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{24}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{73/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{57/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{33/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q-1)^{5}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{81/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{32}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{51/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}}{q^{21}}}&0&0&0&0&0&0&{\frac {(q-1)\left(q^{2}+q+1\right)^{2}}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{3/2}-{\frac {1}{q^{3/2}}}\right)\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)^{2}\left(q^{7}-1\right)}{(q-1)q^{31}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{55/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{39/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{39/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{57/2}}}&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{23}}}&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)}{q^{39/2}}}&0&0&0&0&0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{18}}}&0&0&0&0&0&0&{\frac {q^{3}-1}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0\\0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {1}{q^{29/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{30}}}&0&0&0&0&0&0&{\frac {(q-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{2}+1\right)}{q^{43/2}}}&0&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{73/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{55/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {1}{q^{31/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{42}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+q+1\right)\left(q^{8}+2q^{6}+q^{5}+2q^{4}+q^{3}+2q^{2}+1\right)^{2}}{q^{65/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{2}+1\right)^{2}\left(q^{5}-1\right)^{2}}{q^{25}}}&0&0&0&0&0&0&{\frac {(q-1)\left(q^{3}+q^{2}+q+1\right)^{2}}{q^{39/2}}}&0&0&0&0&0&0&{\frac {1}{q^{16}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{73/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{57/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{33/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)^{2}\left(q^{6}-1\right)\left(q^{7}-1\right)}{(q-1)q^{29}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&0&{\frac {q^{5}+q^{4}-q-1}{q^{35/2}}}&0&0&0&0&0&0&{\frac {1}{q^{17}}}&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{47/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{9}-q^{5}-q^{4}+1}{q^{35/2}}}&0&0&0&0&0&0&{\frac {q^{4}-1}{q^{33/2}}}&0&0&0&0&0&0&{\frac {1}{q^{35/2}}}&0&0&0&0\\0&0&0&0&{\frac {1}{q^{35/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{53/2}}}&0&0&0&0&0&0&{\frac {1}{q^{17}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{69/2}}}&0&0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {1}{q^{33/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{83/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{9}+q^{7}+q^{5}-q^{4}-q^{2}-1\right)^{2}}{q^{31}}}&0&0&0&0&0&0&{\frac {(q-1)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{45/2}}}&0&0&0&0&0&0&{\frac {1}{q^{16}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{73/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{55/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {1}{q^{31/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{63/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{24}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{(q-1)q^{49/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{5}-1\right)}{q^{33/2}}}&0&0&0&0&0&0&{\frac {1}{q^{29/2}}}&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{43/2}}}&0&0&0&0&0&0&{\frac {q^{11}-q^{6}-q^{5}+1}{q^{17}}}&0&0&0&0&0&0&{\frac {q^{5}-1}{q^{29/2}}}&0&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0\\0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{61/2}}}&0&0&0&0&0&0&{\frac {1}{q^{39/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{7}-1\right)^{2}}{q^{39}}}&0&0&0&0&0&0&{\frac {(q-1)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{55/2}}}&0&0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{69/2}}}&0&0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {1}{q^{33/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{30}}}&0&0&0&0&0&0&{\frac {(q-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{2}+1\right)}{q^{43/2}}}&0&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{51/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{27/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{21}}}&0&0&0&0&0&0&{\frac {q^{7}+q^{6}-q-1}{q^{31/2}}}&0&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{13}-q^{7}-q^{6}+1}{q^{33/2}}}&0&0&0&0&0&0&{\frac {q^{6}-1}{q^{25/2}}}&0&0&0&0&0&0&{\frac {1}{q^{21/2}}}&0&0\\0&0&0&0&0&0&{\frac {1}{q^{49/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {\left(q^{7}-1\right)^{2}}{(q-1)q^{69/2}}}&0&0&0&0&0&0&{\frac {1}{q^{22}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{61/2}}}&0&0&0&0&0&0&{\frac {1}{q^{39/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{53/2}}}&0&0&0&0&0&0&{\frac {1}{q^{17}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {1}{q^{29/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q+1)\left(q^{7}-1\right)}{q^{29/2}}}&0&0&0&0&0&0&{\frac {1}{q^{19/2}}}&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{7}-1}{q^{21/2}}}&0&0&0&0&0&0&{\frac {1}{q^{7}}}&0\\0&0&0&0&0&0&0&{\frac {1}{q^{28}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{49/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{35/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{21/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{7}}}&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{7/2}}}\end{array}}\right),\left({\begin{array}{cccccccc}0&0&0&0&0&0&0&{\frac {1}{q^{7/4}}}\\0&0&0&0&0&0&{\frac {1}{q^{5/4}}}&0\\0&0&0&0&0&{\frac {1}{q^{3/4}}}&0&0\\0&0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0&0\\0&0&0&{\sqrt[{4}]{q}}&0&0&0&0\\0&0&q^{3/4}&0&0&0&0&0\\0&q^{5/4}&0&0&0&0&0&0\\q^{7/4}&0&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{cccccccc}0&0&0&0&0&0&0&{\frac {1}{q^{7/4}}}\\0&0&0&0&0&0&{\frac {1}{q^{5/4}}}&0\\0&0&0&0&0&{\frac {1}{q^{3/4}}}&0&0\\0&0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0&0\\0&0&0&{\sqrt[{4}]{q}}&0&0&0&0\\0&0&q^{3/4}&0&0&0&0&0\\0&q^{5/4}&0&0&0&0&0&0\\q^{7/4}&0&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{cccccccc}0&0&0&0&0&0&0&{\frac {1}{q^{7/4}}}\\0&0&0&0&0&0&{\frac {1}{q^{5/4}}}&0\\0&0&0&0&0&{\frac {1}{q^{3/4}}}&0&0\\0&0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0&0\\0&0&0&{\sqrt[{4}]{q}}&0&0&0&0\\0&0&q^{3/4}&0&0&0&0&0\\0&q^{5/4}&0&0&0&0&0&0\\q^{7/4}&0&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{cccccccc}0&0&0&0&0&0&0&{\frac {1}{q^{7/4}}}\\0&0&0&0&0&0&{\frac {1}{q^{5/4}}}&0\\0&0&0&0&0&{\frac {1}{q^{3/4}}}&0&0\\0&0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0&0\\0&0&0&{\sqrt[{4}]{q}}&0&0&0&0\\0&0&q^{3/4}&0&0&0&0&0\\0&q^{5/4}&0&0&0&0&0&0\\q^{7/4}&0&0&0&0&0&0&0\end{array}}\right)\right)\right]}{q^{7/2}+q^{5/2}+q^{3/2}+{\sqrt {q}}+{\frac {1}{\sqrt {q}}}+{\frac {1}{q^{3/2}}}+{\frac {1}{q^{5/2}}}+{\frac {1}{q^{7/2}}}}}\right]} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|