T(5,2)

From Knot Atlas
Revision as of 18:35, 26 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search


[[Image:T(3,2).{{{ext}}}|80px|link=T(3,2)]]

T(3,2)

[[Image:T(7,2).{{{ext}}}|80px|link=T(7,2)]]

T(7,2)

Visit T(5,2)'s page at Knotilus!

Visit T(5,2)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X3948 X9,5,10,4 X5,1,6,10 X1726 X7382
Gauss code {-4, 5, -1, 2, -3, 4, -5, 1, -2, 3}
Dowker-Thistlethwaite code 6 8 10 2 4

Polynomial invariants

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(5,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(5,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 5})

Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of T(5,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
012345χ
15     1-1
13      0
11   11 0
9      0
7  1   1
51     1
31     1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Include[ColouredJonesM.mhtml]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[5, 2]]
Out[2]=   
5
In[3]:=
PD[TorusKnot[5, 2]]
Out[3]=   
PD[X[3, 9, 4, 8], X[9, 5, 10, 4], X[5, 1, 6, 10], X[1, 7, 2, 6], 
  X[7, 3, 8, 2]]
In[4]:=
GaussCode[TorusKnot[5, 2]]
Out[4]=   
GaussCode[-4, 5, -1, 2, -3, 4, -5, 1, -2, 3]
In[5]:=
BR[TorusKnot[5, 2]]
Out[5]=   
BR[2, {1, 1, 1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[5, 2]][t]
Out[6]=   
     -2   1        2

1 + t - - - t + t

t
In[7]:=
Conway[TorusKnot[5, 2]][z]
Out[7]=   
       2    4
1 + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[5, 1], Knot[10, 132]}
In[9]:=
{KnotDet[TorusKnot[5, 2]], KnotSignature[TorusKnot[5, 2]]}
Out[9]=   
{5, 4}
In[10]:=
J=Jones[TorusKnot[5, 2]][q]
Out[10]=   
 2    4    5    6    7
q  + q  - q  + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[5, 1], Knot[10, 132]}
In[12]:=
A2Invariant[TorusKnot[5, 2]][q]
Out[12]=   
 6    8      10    12    14    18    20    22
q  + q  + 2 q   + q   + q   - q   - q   - q
In[13]:=
Kauffman[TorusKnot[5, 2]][a, z]
Out[13]=   
                           2      2      2    3    3    4    4

2 3 z z 2 z z 3 z 4 z z z z z -- + -- + -- - -- - --- + -- - ---- - ---- + -- + -- + -- + --

6    4    9    7    5     8     6      4     7    5    6    4
a a a a a a a a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[5, 2]], Vassiliev[3][TorusKnot[5, 2]]}
Out[14]=   
{0, 5}
In[15]:=
Kh[TorusKnot[5, 2]][q, t]
Out[15]=   
 3    5    7  2    11  3    11  4    15  5
q  + q  + q  t  + q   t  + q   t  + q   t