T(7,2)

From Knot Atlas
Revision as of 18:35, 26 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search


[[Image:T(5,2).{{{ext}}}|80px|link=T(5,2)]]

T(5,2)

[[Image:T(4,3).{{{ext}}}|80px|link=T(4,3)]]

T(4,3)

Visit T(7,2)'s page at Knotilus!

Visit T(7,2)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X5,13,6,12 X13,7,14,6 X7,1,8,14 X1928 X9,3,10,2 X3,11,4,10 X11,5,12,4
Gauss code {-4, 5, -6, 7, -1, 2, -3, 4, -5, 6, -7, 1, -2, 3}
Dowker-Thistlethwaite code 8 10 12 14 2 4 6

Polynomial invariants

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 7, 6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(7,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(7,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 14})

Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of T(7,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
01234567χ
21       1-1
19        0
17     11 0
15        0
13   11   0
11        0
9  1     1
71       1
51       1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Include[ColouredJonesM.mhtml]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[7, 2]]
Out[2]=   
7
In[3]:=
PD[TorusKnot[7, 2]]
Out[3]=   
PD[X[5, 13, 6, 12], X[13, 7, 14, 6], X[7, 1, 8, 14], X[1, 9, 2, 8], 
  X[9, 3, 10, 2], X[3, 11, 4, 10], X[11, 5, 12, 4]]
In[4]:=
GaussCode[TorusKnot[7, 2]]
Out[4]=   
GaussCode[-4, 5, -6, 7, -1, 2, -3, 4, -5, 6, -7, 1, -2, 3]
In[5]:=
BR[TorusKnot[7, 2]]
Out[5]=   
BR[2, {1, 1, 1, 1, 1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[7, 2]][t]
Out[6]=   
      -3    -2   1        2    3

-1 + t - t + - + t - t + t

t
In[7]:=
Conway[TorusKnot[7, 2]][z]
Out[7]=   
       2      4    6
1 + 6 z  + 5 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[7, 1]}
In[9]:=
{KnotDet[TorusKnot[7, 2]], KnotSignature[TorusKnot[7, 2]]}
Out[9]=   
{7, 6}
In[10]:=
J=Jones[TorusKnot[7, 2]][q]
Out[10]=   
 3    5    6    7    8    9    10
q  + q  - q  + q  - q  + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[7, 1]}
In[12]:=
A2Invariant[TorusKnot[7, 2]][q]
Out[12]=   
 10    12      14    16    18    26    28    30
q   + q   + 2 q   + q   + q   - q   - q   - q
In[13]:=
Kauffman[TorusKnot[7, 2]][a, z]
Out[13]=   
                                  2       2      2       2    3

-3 4 z z z 3 z z 2 z 7 z 10 z z -- - -- + --- - --- + -- + --- + --- - ---- + ---- + ----- + --- -

8    6    13    11    9    7     12    10      8      6      11

a a a a a a a a a a a

    3      3    4       4      4    5    5    6    6
 3 z    4 z    z     5 z    6 z    z    z    z    z
 ---- - ---- + --- - ---- - ---- + -- + -- + -- + --
   9      7     10     8      6     9    7    8    6
a a a a a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[7, 2]], Vassiliev[3][TorusKnot[7, 2]]}
Out[14]=   
{0, 14}
In[15]:=
Kh[TorusKnot[7, 2]][q, t]
Out[15]=   
 5    7    9  2    13  3    13  4    17  5    17  6    21  7
q  + q  + q  t  + q   t  + q   t  + q   t  + q   t  + q   t