0 1

From Knot Atlas
Revision as of 19:12, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

0 1.gif

0_1

3 1.gif

3_1

0 1.gif Visit 0 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit [ 0 1's page] at Knotilus!

Visit 0 1's page at the original Knot Atlas!

Also known as "the Unknot"



A temple symbol MANJI in a Japanese map[1]
A toroidal bubble in glass [2]
Simple closed loop as pseudo-knot
Emblem of Fukuoka prefecture, Japan
Elaborate heraldic depiction
Ornamentation in Palermo, Sicily

Knot presentations

Planar diagram presentation
Gauss code
Dowker-Thistlethwaite code
Conway Notation Data:0 1/Conway Notation

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant Missing

[edit Notes for 0 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial 1
Conway polynomial 1
2nd Alexander ideal (db, data sources)
Determinant and Signature { 1, 0 }
Jones polynomial 1
HOMFLY-PT polynomial (db, data sources) 1
Kauffman polynomial (db, data sources) 1
The A2 invariant Data:0 1/QuantumInvariant/A2/1,0
The G2 invariant

Vassiliev invariants

V2 and V3: (0, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 0 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.    Data:0 1/KhovanovTable
Integral Khovanov Homology

(db, data source)

   Data:0 1/Integral Khovanov Homology

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[0, 1]]
Out[2]=  
0
In[3]:=
PD[Knot[0, 1]]
Out[3]=  
PD[Loop[1]]
In[4]:=
GaussCode[Knot[0, 1]]
Out[4]=  
GaussCode[]
In[5]:=
BR[Knot[0, 1]]
Out[5]=  
BR[1, {}]
In[6]:=
alex = Alexander[Knot[0, 1]][t]
Out[6]=  
1
In[7]:=
Conway[Knot[0, 1]][z]
Out[7]=  
1
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[0, 1], Knot[11, NonAlternating, 34], Knot[11, NonAlternating, 42]}
In[9]:=
{KnotDet[Knot[0, 1]], KnotSignature[Knot[0, 1]]}
Out[9]=  
{1, 0}
In[10]:=
J=Jones[Knot[0, 1]][q]
Out[10]=  
1
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[0, 1]}
In[12]:=
A2Invariant[Knot[0, 1]][q]
Out[12]=  
     -2    2
1 + q   + q
In[13]:=
Kauffman[Knot[0, 1]][a, z]
Out[13]=  
1
In[14]:=
{Vassiliev[2][Knot[0, 1]], Vassiliev[3][Knot[0, 1]]}
Out[14]=  
{0, 0}
In[15]:=
Kh[Knot[0, 1]][q, t]
Out[15]=  
1

- + q

q