10 112
|
|
Visit 10 112's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 112's page at Knotilus! Visit 10 112's page at the original Knot Atlas! |
10 112 Further Notes and Views
Knot presentations
Planar diagram presentation | X6271 X8394 X18,11,19,12 X20,13,1,14 X2,16,3,15 X4,17,5,18 X12,19,13,20 X10,6,11,5 X14,7,15,8 X16,10,17,9 |
Gauss code | 1, -5, 2, -6, 8, -1, 9, -2, 10, -8, 3, -7, 4, -9, 5, -10, 6, -3, 7, -4 |
Dowker-Thistlethwaite code | 6 8 10 14 16 18 20 2 4 12 |
Conway Notation | [8*3] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 112"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 87, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (2, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 112. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 112]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 112]] |
Out[3]= | PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[18, 11, 19, 12], X[20, 13, 1, 14],X[2, 16, 3, 15], X[4, 17, 5, 18], X[12, 19, 13, 20], X[10, 6, 11, 5],X[14, 7, 15, 8], X[16, 10, 17, 9]] |
In[4]:= | GaussCode[Knot[10, 112]] |
Out[4]= | GaussCode[1, -5, 2, -6, 8, -1, 9, -2, 10, -8, 3, -7, 4, -9, 5, -10, 6, -3, 7, -4] |
In[5]:= | BR[Knot[10, 112]] |
Out[5]= | BR[3, {-1, -1, -1, 2, -1, 2, -1, 2, -1, 2}] |
In[6]:= | alex = Alexander[Knot[10, 112]][t] |
Out[6]= | -4 5 11 17 2 3 4 |
In[7]:= | Conway[Knot[10, 112]][z] |
Out[7]= | 2 4 6 8 1 + 2 z - z - 3 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 112], Knot[11, Alternating, 184]} |
In[9]:= | {KnotDet[Knot[10, 112]], KnotSignature[Knot[10, 112]]} |
Out[9]= | {87, -2} |
In[10]:= | J=Jones[Knot[10, 112]][q] |
Out[10]= | -7 4 7 11 14 14 14 2 3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 112]} |
In[12]:= | A2Invariant[Knot[10, 112]][q] |
Out[12]= | -20 2 -16 3 -12 2 -8 6 -4 3 2 |
In[13]:= | Kauffman[Knot[10, 112]][a, z] |
Out[13]= | 2 4 3 5 2 2 2 4 2 6 2 |
In[14]:= | {Vassiliev[2][Knot[10, 112]], Vassiliev[3][Knot[10, 112]]} |
Out[14]= | {0, -2} |
In[15]:= | Kh[Knot[10, 112]][q, t] |
Out[15]= | 7 8 1 3 1 4 3 7 4 |