In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Knot[10, 64]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 64]] |
Out[3]= | PD[X[8, 2, 9, 1], X[10, 4, 11, 3], X[2, 10, 3, 9], X[18, 12, 19, 11],
X[14, 5, 15, 6], X[4, 17, 5, 18], X[16, 7, 17, 8], X[6, 15, 7, 16],
X[20, 14, 1, 13], X[12, 20, 13, 19]] |
In[4]:= | GaussCode[Knot[10, 64]] |
Out[4]= | GaussCode[1, -3, 2, -6, 5, -8, 7, -1, 3, -2, 4, -10, 9, -5, 8, -7, 6,
-4, 10, -9] |
In[5]:= | BR[Knot[10, 64]] |
Out[5]= | BR[3, {1, 1, 1, -2, 1, 1, 1, -2, -2, -2}] |
In[6]:= | alex = Alexander[Knot[10, 64]][t] |
Out[6]= | -4 3 6 10 2 3 4
-11 - t + -- - -- + -- + 10 t - 6 t + 3 t - t
3 2 t
t t |
In[7]:= | Conway[Knot[10, 64]][z] |
Out[7]= | 2 4 6 8
1 - 3 z - 8 z - 5 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 64]} |
In[9]:= | {KnotDet[Knot[10, 64]], KnotSignature[Knot[10, 64]]} |
Out[9]= | {51, 2} |
In[10]:= | J=Jones[Knot[10, 64]][q] |
Out[10]= | -3 2 4 2 3 4 5 6 7
-6 + q - -- + - + 8 q - 8 q + 8 q - 7 q + 4 q - 2 q + q
2 q
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 64]} |
In[12]:= | A2Invariant[Knot[10, 64]][q] |
Out[12]= | -8 2 2 4 6 8 12 14 16 20
q + -- + q - 2 q + 2 q - 2 q - q - q + 2 q + q
4
q |
In[13]:= | Kauffman[Knot[10, 64]][a, z] |
Out[13]= | 2 2 2
3 6 4 z 6 z 3 z 2 2 z 3 z 8 z
4 + -- + -- - --- - --- - --- - a z - 9 z - ---- + ---- - ---- -
4 2 5 3 a 8 6 4
a a a a a a a
2 3 3 3 3 4
26 z 2 2 3 z 15 z 16 z 4 z 3 4 z
----- + 4 a z - ---- + ----- + ----- + ---- + 6 a z + 7 z + -- -
2 7 5 3 a 8
a a a a a
4 4 4 5 5 5 5
5 z 13 z 30 z 2 4 2 z 11 z 11 z 5 z
---- + ----- + ----- - 4 a z + ---- - ----- - ----- - ---- -
6 4 2 7 5 3 a
a a a a a a
6 6 6 7 7
5 6 3 z 8 z 18 z 2 6 4 z 2 z 7
7 a z - 6 z + ---- - ---- - ----- + a z + ---- + ---- + 2 a z +
6 4 2 5 3
a a a a a
8 8 9 9
8 3 z 5 z z z
2 z + ---- + ---- + -- + --
4 2 3 a
a a a |
In[14]:= | {Vassiliev[2][Knot[10, 64]], Vassiliev[3][Knot[10, 64]]} |
Out[14]= | {0, -3} |
In[15]:= | Kh[Knot[10, 64]][q, t] |
Out[15]= | 3 1 1 1 3 1 3 3 q
5 q + 4 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
7 4 5 3 3 3 3 2 2 q t t
q t q t q t q t q t
3 5 5 2 7 2 7 3 9 3 9 4
4 q t + 4 q t + 4 q t + 4 q t + 3 q t + 4 q t + q t +
11 4 11 5 13 5 15 6
3 q t + q t + q t + q t |