T(4,3)

From Knot Atlas
Revision as of 19:45, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

T(7,2).jpg

T(7,2)

T(9,2).jpg

T(9,2)

T(4,3).jpg Visit [[[:Template:KnotilusURL]] T(4,3)'s page] at Knotilus!

Visit T(4,3)'s page at the original Knot Atlas!

See also 8_19.


T(4,3) Further Notes and Views

Knot presentations

Planar diagram presentation X5,11,6,10 X16,12,1,11 X1726 X12,8,13,7 X13,3,14,2 X8493 X9,15,10,14 X4,16,5,15
Gauss code -3, 5, 6, -8, -1, 3, 4, -6, -7, 1, 2, -4, -5, 7, 8, -2
Dowker-Thistlethwaite code 6 -8 10 -12 14 -16 2 -4
Conway Notation Data:T(4,3)/Conway Notation

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 3, 6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(4,3)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(4,3)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (5, 10)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(4,3)/V 2,1 Data:T(4,3)/V 3,1 Data:T(4,3)/V 4,1 Data:T(4,3)/V 4,2 Data:T(4,3)/V 4,3 Data:T(4,3)/V 5,1 Data:T(4,3)/V 5,2 Data:T(4,3)/V 5,3 Data:T(4,3)/V 5,4 Data:T(4,3)/V 6,1 Data:T(4,3)/V 6,2 Data:T(4,3)/V 6,3 Data:T(4,3)/V 6,4 Data:T(4,3)/V 6,5 Data:T(4,3)/V 6,6 Data:T(4,3)/V 6,7 Data:T(4,3)/V 6,8 Data:T(4,3)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of T(4,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
012345χ
17     1-1
15     1-1
13   11 0
11    1 1
9  1   1
71     1
51     1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[4, 3]]
Out[2]=  
8
In[3]:=
PD[TorusKnot[4, 3]]
Out[3]=  
PD[X[5, 11, 6, 10], X[16, 12, 1, 11], X[1, 7, 2, 6], X[12, 8, 13, 7], 
  X[13, 3, 14, 2], X[8, 4, 9, 3], X[9, 15, 10, 14], X[4, 16, 5, 15]]
In[4]:=
GaussCode[TorusKnot[4, 3]]
Out[4]=  
GaussCode[-3, 5, 6, -8, -1, 3, 4, -6, -7, 1, 2, -4, -5, 7, 8, -2]
In[5]:=
BR[TorusKnot[4, 3]]
Out[5]=  
BR[3, {1, 2, 1, 2, 1, 2, 1, 2}]
In[6]:=
alex = Alexander[TorusKnot[4, 3]][t]
Out[6]=  
               -3              -2              2              3
1 + Alternating   - Alternating   - Alternating  + Alternating
In[7]:=
Conway[TorusKnot[4, 3]][z]
Out[7]=  
       2      4    6
1 + 5 z  + 5 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 19]}
In[9]:=
{KnotDet[TorusKnot[4, 3]], KnotSignature[TorusKnot[4, 3]]}
Out[9]=  
{3, 6}
In[10]:=
J=Jones[TorusKnot[4, 3]][q]
Out[10]=  
 3    5    8
q  + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[8, 19]}
In[12]:=
A2Invariant[TorusKnot[4, 3]][q]
Out[12]=  
 10    12      14      16      18    22      24      26    28    32
q   + q   + 2 q   + 2 q   + 2 q   - q   - 2 q   - 2 q   - q   + q
In[13]:=
Kauffman[TorusKnot[4, 3]][a, z]
Out[13]=  
                                  2       2      3      3      4
 -10   5    5    5 z   5 z   10 z    10 z    5 z    5 z    6 z

-a - -- - -- + --- + --- + ----- + ----- - ---- - ---- - ---- -

        8    6    9     7      8       6       9      7      8
       a    a    a     a      a       a       a      a      a

    4    5    5    6    6
 6 z    z    z    z    z
 ---- + -- + -- + -- + --
   6     9    7    8    6
a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[4, 3]], Vassiliev[3][TorusKnot[4, 3]]}
Out[14]=  
{0, 10}
In[15]:=
Kh[TorusKnot[4, 3]][q, t]
Out[15]=  
 5    7              2  9              4  11              3  13

q + q + Alternating q + Alternating q + Alternating q +

            4  13              5  15              5  17
Alternating q + Alternating q + Alternating q