T(3,2)

From Knot Atlas
Revision as of 19:45, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

T(3,2).jpg

T(3,2)

T(5,2).jpg

T(5,2)

T(3,2).jpg Visit [[[:Template:KnotilusURL]] T(3,2)'s page] at Knotilus!

Visit T(3,2)'s page at the original Knot Atlas!

See 3_1.


T(3,2) Further Notes and Views

Knot presentations

Planar diagram presentation X3146 X1524 X5362
Gauss code -2, 3, -1, 2, -3, 1
Dowker-Thistlethwaite code 4 6 2
Conway Notation Data:T(3,2)/Conway Notation

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 3, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(3,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(3,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(3,2)/V 2,1 Data:T(3,2)/V 3,1 Data:T(3,2)/V 4,1 Data:T(3,2)/V 4,2 Data:T(3,2)/V 4,3 Data:T(3,2)/V 5,1 Data:T(3,2)/V 5,2 Data:T(3,2)/V 5,3 Data:T(3,2)/V 5,4 Data:T(3,2)/V 6,1 Data:T(3,2)/V 6,2 Data:T(3,2)/V 6,3 Data:T(3,2)/V 6,4 Data:T(3,2)/V 6,5 Data:T(3,2)/V 6,6 Data:T(3,2)/V 6,7 Data:T(3,2)/V 6,8 Data:T(3,2)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of T(3,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123χ
9   1-1
7    0
5  1 1
31   1
11   1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[3, 2]]
Out[2]=  
3
In[3]:=
PD[TorusKnot[3, 2]]
Out[3]=  
PD[X[3, 1, 4, 6], X[1, 5, 2, 4], X[5, 3, 6, 2]]
In[4]:=
GaussCode[TorusKnot[3, 2]]
Out[4]=  
GaussCode[-2, 3, -1, 2, -3, 1]
In[5]:=
BR[TorusKnot[3, 2]]
Out[5]=  
BR[2, {1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[3, 2]][t]
Out[6]=  
          1

-1 + ----------- + Alternating

Alternating
In[7]:=
Conway[TorusKnot[3, 2]][z]
Out[7]=  
     2
1 + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[3, 1]}
In[9]:=
{KnotDet[TorusKnot[3, 2]], KnotSignature[TorusKnot[3, 2]]}
Out[9]=  
{3, 2}
In[10]:=
J=Jones[TorusKnot[3, 2]][q]
Out[10]=  
     3    4
q + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[3, 1]}
In[12]:=
A2Invariant[TorusKnot[3, 2]][q]
Out[12]=  
 2    4      6    8    12    14
q  + q  + 2 q  + q  - q   - q
In[13]:=
Kauffman[TorusKnot[3, 2]][a, z]
Out[13]=  
                       2    2
 -4   2    z    z    z    z

-a - -- + -- + -- + -- + --

       2    5    3    4    2
a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]}
Out[14]=  
{0, 1}
In[15]:=
Kh[TorusKnot[3, 2]][q, t]
Out[15]=  
     3              2  5              3  9
q + q  + Alternating  q  + Alternating  q