T(33,2)
|
|
Visit [[[:Template:KnotilusURL]] T(33,2)'s page] at Knotilus!
Visit T(33,2)'s page at the original Knot Atlas! | |
T(33,2) Quick Notes |
T(33,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X31,65,32,64 X65,33,66,32 X33,1,34,66 X1,35,2,34 X35,3,36,2 X3,37,4,36 X37,5,38,4 X5,39,6,38 X39,7,40,6 X7,41,8,40 X41,9,42,8 X9,43,10,42 X43,11,44,10 X11,45,12,44 X45,13,46,12 X13,47,14,46 X47,15,48,14 X15,49,16,48 X49,17,50,16 X17,51,18,50 X51,19,52,18 X19,53,20,52 X53,21,54,20 X21,55,22,54 X55,23,56,22 X23,57,24,56 X57,25,58,24 X25,59,26,58 X59,27,60,26 X27,61,28,60 X61,29,62,28 X29,63,30,62 X63,31,64,30 |
Gauss code | -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 1, -2, 3 |
Dowker-Thistlethwaite code | 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 |
Conway Notation | Data:T(33,2)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(33,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 33, 32 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (136, 1496) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 32 is the signature of T(33,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[33, 2]] |
Out[2]= | 33 |
In[3]:= | PD[TorusKnot[33, 2]] |
Out[3]= | PD[X[31, 65, 32, 64], X[65, 33, 66, 32], X[33, 1, 34, 66],X[1, 35, 2, 34], X[35, 3, 36, 2], X[3, 37, 4, 36], X[37, 5, 38, 4], X[5, 39, 6, 38], X[39, 7, 40, 6], X[7, 41, 8, 40], X[41, 9, 42, 8], X[9, 43, 10, 42], X[43, 11, 44, 10], X[11, 45, 12, 44], X[45, 13, 46, 12], X[13, 47, 14, 46], X[47, 15, 48, 14], X[15, 49, 16, 48], X[49, 17, 50, 16], X[17, 51, 18, 50], X[51, 19, 52, 18], X[19, 53, 20, 52], X[53, 21, 54, 20], X[21, 55, 22, 54], X[55, 23, 56, 22], X[23, 57, 24, 56], X[57, 25, 58, 24], X[25, 59, 26, 58], X[59, 27, 60, 26], X[27, 61, 28, 60], X[61, 29, 62, 28], X[29, 63, 30, 62],X[63, 31, 64, 30]] |
In[4]:= | GaussCode[TorusKnot[33, 2]] |
Out[4]= | GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18,19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32,-33, 1, -2, 3] |
In[5]:= | BR[TorusKnot[33, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[33, 2]][t] |
Out[6]= | -16 -15 -14 -13 |
In[7]:= | Conway[TorusKnot[33, 2]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[33, 2]], KnotSignature[TorusKnot[33, 2]]} |
Out[9]= | {33, 32} |
In[10]:= | J=Jones[TorusKnot[33, 2]][q] |
Out[10]= | 16 18 19 20 21 22 23 24 25 26 27 28 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[33, 2]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[33, 2]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[33, 2]], Vassiliev[3][TorusKnot[33, 2]]} |
Out[14]= | {0, 1496} |
In[15]:= | Kh[TorusKnot[33, 2]][q, t] |
Out[15]= | 31 33 2 35 3 39 4 39 |