In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[6, 1]] |
Out[2]= | PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[5, 12, 6, 1], X[11, 6, 12, 7]] |
In[3]:= | GaussCode[Knot[6, 1]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -5, 6, -2, 3, -4, 2, -6, 5] |
In[4]:= | DTCode[Knot[6, 1]] |
Out[4]= | DTCode[4, 8, 12, 10, 2, 6] |
In[5]:= | br = BR[Knot[6, 1]] |
Out[5]= | BR[4, {-1, -1, -2, 1, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 7} |
In[7]:= | BraidIndex[Knot[6, 1]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[6, 1]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[6, 1]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 1, 2, {3, 4}, 1} |
In[10]:= | alex = Alexander[Knot[6, 1]][t] |
Out[10]= | 2
5 - - - 2 t
t |
In[11]:= | Conway[Knot[6, 1]][z] |
Out[11]= | 2
1 - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[6, 1], Knot[9, 46], Knot[11, NonAlternating, 67],
Knot[11, NonAlternating, 97], Knot[11, NonAlternating, 139]} |
In[13]:= | {KnotDet[Knot[6, 1]], KnotSignature[Knot[6, 1]]} |
Out[13]= | {9, 0} |
In[14]:= | Jones[Knot[6, 1]][q] |
Out[14]= | -4 -3 -2 2 2
2 + q - q + q - - - q + q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[6, 1]} |
In[16]:= | A2Invariant[Knot[6, 1]][q] |
Out[16]= | -14 -12 -6 -4 2 6 8
q + q - q - q + q + q + q |
In[17]:= | HOMFLYPT[Knot[6, 1]][a, z] |
Out[17]= | -2 2 4 2 2 2
a - a + a - z - a z |
In[18]:= | Kauffman[Knot[6, 1]][a, z] |
Out[18]= | 2 3
-2 2 4 3 z 2 2 4 2 z
-a + a + a + 2 a z + 2 a z + -- - 4 a z - 3 a z + -- -
2 a
a
3 3 3 4 2 4 4 4 5 3 5
2 a z - 3 a z + z + 2 a z + a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[6, 1]], Vassiliev[3][Knot[6, 1]]} |
Out[19]= | {-2, 1} |
In[20]:= | Kh[Knot[6, 1]][q, t] |
Out[20]= | 1 1 1 1 1 1 5 2
- + 2 q + ----- + ----- + ----- + ---- + --- + q t + q t
q 9 4 5 3 5 2 3 q t
q t q t q t q t |
In[21]:= | ColouredJones[Knot[6, 1], 2][q] |
Out[21]= | -12 -11 -10 2 -8 2 3 3 4 4 2
4 + q - q - q + -- - q - -- + -- - -- + -- - - - 3 q +
9 7 6 4 3 q
q q q q q
3 5 6
2 q - q + q |