In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 14]] |
Out[2]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[7, 16, 8, 17], X[13, 20, 14, 1], X[19, 14, 20, 15],
X[9, 18, 10, 19], X[15, 6, 16, 7], X[17, 8, 18, 9]] |
In[3]:= | GaussCode[Knot[10, 14]] |
Out[3]= | GaussCode[-1, 4, -3, 1, -2, 9, -5, 10, -8, 3, -4, 2, -6, 7, -9, 5, -10,
8, -7, 6] |
In[4]:= | DTCode[Knot[10, 14]] |
Out[4]= | DTCode[4, 10, 12, 16, 18, 2, 20, 6, 8, 14] |
In[5]:= | br = BR[Knot[10, 14]] |
Out[5]= | BR[4, {-1, -1, -1, -1, -1, -2, 1, -2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 14]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 14]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 14]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 3, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 14]][t] |
Out[10]= | 2 8 12 2 3
13 - -- + -- - -- - 12 t + 8 t - 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 14]][z] |
Out[11]= | 2 4 6
1 + 2 z - 4 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 14], Knot[11, Alternating, 161], Knot[11, NonAlternating, 2]} |
In[13]:= | {KnotDet[Knot[10, 14]], KnotSignature[Knot[10, 14]]} |
Out[13]= | {57, -4} |
In[14]:= | Jones[Knot[10, 14]][q] |
Out[14]= | -10 3 5 8 9 9 9 6 4 2
1 + q - -- + -- - -- + -- - -- + -- - -- + -- - -
9 8 7 6 5 4 3 2 q
q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 14]} |
In[16]:= | A2Invariant[Knot[10, 14]][q] |
Out[16]= | -30 -28 2 -20 2 -16 -14 3 -8 -6
1 + q - q - --- + q - --- + q + q + --- - q + q
22 18 10
q q q |
In[17]:= | HOMFLYPT[Knot[10, 14]][a, z] |
Out[17]= | 2 4 6 2 2 4 2 6 2 8 2 2 4 4 4
a + a - a + 3 a z - a z - 2 a z + 2 a z + a z - 3 a z -
6 4 8 4 4 6 6 6
3 a z + a z - a z - a z |
In[18]:= | Kauffman[Knot[10, 14]][a, z] |
Out[18]= | 2 4 6 3 5 7 9 11 2 2
-a + a + a - a z - 4 a z - 2 a z + 2 a z + a z + 4 a z -
4 2 6 2 8 2 12 2 3 3 5 3 7 3
a z - 9 a z - 3 a z - a z + 6 a z + 10 a z + 8 a z -
11 3 2 4 4 4 6 4 8 4 10 4
4 a z - 4 a z + 2 a z + 16 a z + 5 a z - 4 a z +
12 4 3 5 5 5 7 5 9 5 11 5 2 6
a z - 7 a z - 9 a z - 9 a z - 4 a z + 3 a z + a z -
4 6 6 6 8 6 10 6 3 7 5 7 7 7
5 a z - 14 a z - 4 a z + 4 a z + 2 a z + a z + 3 a z +
9 7 4 8 6 8 8 8 5 9 7 9
4 a z + 2 a z + 5 a z + 3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 14]], Vassiliev[3][Knot[10, 14]]} |
Out[19]= | {2, -3} |
In[20]:= | Kh[Knot[10, 14]][q, t] |
Out[20]= | 2 3 1 2 1 3 2 5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ +
5 3 21 8 19 7 17 7 17 6 15 6 15 5
q q q t q t q t q t q t q t
3 4 5 5 4 4 5 2
------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- +
13 5 13 4 11 4 11 3 9 3 9 2 7 2 7
q t q t q t q t q t q t q t q t
4 t t 2
---- + -- + - + q t
5 3 q
q t q |
In[21]:= | ColouredJones[Knot[10, 14], 2][q] |
Out[21]= | -28 3 -26 7 13 4 21 33 5 44 55
q - --- + q + --- - --- + --- + --- - --- + --- + --- - --- +
27 25 24 23 22 21 20 19 18
q q q q q q q q q
-17 64 65 7 71 56 16 62 36 20 41 15
q + --- - --- - --- + --- - --- - --- + --- - -- - -- + -- - -- -
16 15 14 13 12 11 10 9 8 7 6
q q q q q q q q q q q
16 20 3 8 6 2
-- + -- - -- - -- + - - 2 q + q
5 4 3 2 q
q q q q |