In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 120]] |
Out[2]= | PD[X[1, 6, 2, 7], X[5, 18, 6, 19], X[13, 20, 14, 1], X[11, 16, 12, 17],
X[3, 10, 4, 11], X[7, 12, 8, 13], X[9, 4, 10, 5], X[15, 8, 16, 9],
X[19, 14, 20, 15], X[17, 2, 18, 3]] |
In[3]:= | GaussCode[Knot[10, 120]] |
Out[3]= | GaussCode[-1, 10, -5, 7, -2, 1, -6, 8, -7, 5, -4, 6, -3, 9, -8, 4, -10,
2, -9, 3] |
In[4]:= | DTCode[Knot[10, 120]] |
Out[4]= | DTCode[6, 10, 18, 12, 4, 16, 20, 8, 2, 14] |
In[5]:= | br = BR[Knot[10, 120]] |
Out[5]= | BR[5, {-1, -1, -2, 1, 3, 2, -1, -4, -3, -2, -2, -3, -3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 14} |
In[7]:= | BraidIndex[Knot[10, 120]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 120]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 120]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, {2, 3}, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 120]][t] |
Out[10]= | 8 26 2
37 + -- - -- - 26 t + 8 t
2 t
t |
In[11]:= | Conway[Knot[10, 120]][z] |
Out[11]= | 2 4
1 + 6 z + 8 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 120]} |
In[13]:= | {KnotDet[Knot[10, 120]], KnotSignature[Knot[10, 120]]} |
Out[13]= | {105, -4} |
In[14]:= | Jones[Knot[10, 120]][q] |
Out[14]= | -12 4 8 13 16 18 17 13 10 4 -2
q - --- + --- - -- + -- - -- + -- - -- + -- - -- + q
11 10 9 8 7 6 5 4 3
q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 120]} |
In[16]:= | A2Invariant[Knot[10, 120]][q] |
Out[16]= | -38 -36 3 -32 5 2 2 -22 2 -18 5
q + q - --- + q - --- + --- - --- + q + --- - q + --- -
34 28 26 24 20 16
q q q q q q
2 2 3 3 -6
--- + --- + --- - -- + q
14 12 10 8
q q q q |
In[17]:= | HOMFLYPT[Knot[10, 120]][a, z] |
Out[17]= | 6 10 12 6 2 8 2 10 2 4 4 6 4
3 a - 3 a + a + 7 a z + 3 a z - 4 a z + a z + 4 a z +
8 4
3 a z |
In[18]:= | Kauffman[Knot[10, 120]][a, z] |
Out[18]= | 6 10 12 7 9 11 13 6 2
-3 a + 3 a + a + 2 a z - 4 a z - 8 a z - 2 a z + 7 a z -
10 2 12 2 14 2 7 3 9 3 11 3
7 a z + a z + a z + 5 a z + 26 a z + 29 a z +
13 3 4 4 6 4 8 4 10 4 12 4
8 a z + a z - 11 a z - 3 a z + 17 a z + 6 a z -
14 4 5 5 7 5 9 5 11 5 13 5
2 a z + 4 a z - 17 a z - 44 a z - 33 a z - 10 a z +
6 6 8 6 10 6 12 6 14 6 7 7
10 a z - 9 a z - 33 a z - 13 a z + a z + 13 a z +
9 7 11 7 13 7 8 8 10 8 12 8
16 a z + 7 a z + 4 a z + 10 a z + 16 a z + 6 a z +
9 9 11 9
3 a z + 3 a z |
In[19]:= | {Vassiliev[2][Knot[10, 120]], Vassiliev[3][Knot[10, 120]]} |
Out[19]= | {6, -13} |
In[20]:= | Kh[Knot[10, 120]][q, t] |
Out[20]= | -5 -3 1 3 1 5 3 8
q + q + ------- + ------ + ------ + ------ + ------ + ------ +
25 10 23 9 21 9 21 8 19 8 19 7
q t q t q t q t q t q t
5 8 8 10 8 7 10
------ + ------ + ------ + ------ + ------ + ------ + ------ +
17 7 17 6 15 6 15 5 13 5 13 4 11 4
q t q t q t q t q t q t q t
6 7 4 6 4
------ + ----- + ----- + ----- + ----
11 3 9 3 9 2 7 2 5
q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 120], 2][q] |
Out[21]= | -34 4 2 15 27 8 70 59 63 158 62
q - --- + --- + --- - --- - --- + --- - --- - --- + --- - --- -
33 32 31 30 29 28 27 26 25 24
q q q q q q q q q q
154 226 27 232 239 24 255 192 62 205 109
--- + --- - --- - --- + --- + --- - --- + --- + --- - --- + --- +
23 22 21 20 19 18 17 16 15 14 13
q q q q q q q q q q q
63 110 38 31 33 7 6 4 -4
--- - --- + --- + -- - -- + -- + -- - -- + q
12 11 10 9 8 7 6 5
q q q q q q q q |