In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 53]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[15, 20, 16, 1],
X[9, 16, 10, 17], X[19, 10, 20, 11], X[11, 18, 12, 19],
X[17, 12, 18, 13], X[13, 6, 14, 7], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 53]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -3, 9, -10, 2, -5, 6, -7, 8, -9, 3, -4, 5, -8,
7, -6, 4] |
In[4]:= | DTCode[Knot[10, 53]] |
Out[4]= | DTCode[4, 8, 14, 2, 16, 18, 6, 20, 12, 10] |
In[5]:= | br = BR[Knot[10, 53]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, 3, -2, -4, -3, -3, -3, -4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 53]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 53]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 53]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, {2, 3}, 2, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 53]][t] |
Out[10]= | 6 18 2
25 + -- - -- - 18 t + 6 t
2 t
t |
In[11]:= | Conway[Knot[10, 53]][z] |
Out[11]= | 2 4
1 + 6 z + 6 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 53], Knot[11, Alternating, 95]} |
In[13]:= | {KnotDet[Knot[10, 53]], KnotSignature[Knot[10, 53]]} |
Out[13]= | {73, -4} |
In[14]:= | Jones[Knot[10, 53]][q] |
Out[14]= | -12 3 5 9 11 12 12 9 7 3 -2
q - --- + --- - -- + -- - -- + -- - -- + -- - -- + q
11 10 9 8 7 6 5 4 3
q q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 53]} |
In[16]:= | A2Invariant[Knot[10, 53]][q] |
Out[16]= | -38 -36 2 -30 4 -26 -24 -22 2 4
q + q - --- - q - --- + q - q + q + --- + --- -
34 28 20 16
q q q q
-14 -12 2 2 -6
q + q + --- - -- + q
10 8
q q |
In[17]:= | HOMFLYPT[Knot[10, 53]][a, z] |
Out[17]= | 6 10 12 4 2 6 2 8 2 10 2 4 4
3 a - 3 a + a + a z + 6 a z + 2 a z - 3 a z + a z +
6 4 8 4
3 a z + 2 a z |
In[18]:= | Kauffman[Knot[10, 53]][a, z] |
Out[18]= | 6 10 12 7 9 11 13 4 2
-3 a + 3 a + a + a z - 7 a z - 11 a z - 3 a z - a z +
6 2 8 2 10 2 12 2 14 2 5 3
8 a z + 4 a z - 5 a z + 2 a z + 2 a z - 2 a z +
7 3 9 3 11 3 13 3 4 4 6 4
a z + 21 a z + 28 a z + 10 a z + a z - 9 a z -
8 4 10 4 14 4 5 5 7 5 9 5
7 a z + 6 a z - 3 a z + 3 a z - 6 a z - 26 a z -
11 5 13 5 6 6 10 6 12 6 14 6
27 a z - 10 a z + 6 a z - 13 a z - 6 a z + a z +
7 7 9 7 11 7 13 7 8 8 10 8
6 a z + 10 a z + 7 a z + 3 a z + 4 a z + 7 a z +
12 8 9 9 11 9
3 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[10, 53]], Vassiliev[3][Knot[10, 53]]} |
Out[19]= | {6, -13} |
In[20]:= | Kh[Knot[10, 53]][q, t] |
Out[20]= | -5 -3 1 2 1 3 2 6
q + q + ------- + ------ + ------ + ------ + ------ + ------ +
25 10 23 9 21 9 21 8 19 8 19 7
q t q t q t q t q t q t
3 5 6 7 5 5 7
------ + ------ + ------ + ------ + ------ + ------ + ------ +
17 7 17 6 15 6 15 5 13 5 13 4 11 4
q t q t q t q t q t q t q t
4 5 3 4 3
------ + ----- + ----- + ----- + ----
11 3 9 3 9 2 7 2 5
q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[10, 53], 2][q] |
Out[21]= | -34 3 10 13 7 35 25 32 73 28 71
q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- +
33 31 30 29 28 27 26 25 24 23
q q q q q q q q q q
105 16 106 115 4 117 98 18 95 62 20
--- - --- - --- + --- + --- - --- + --- + --- - --- + --- + --- -
22 21 20 19 18 17 16 15 14 13 12
q q q q q q q q q q q
54 27 11 19 7 3 3 -4
--- + --- + -- - -- + -- + -- - -- + q
11 10 9 8 7 6 5
q q q q q q q |