10 36
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 36's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X7,16,8,17 X11,20,12,1 X13,18,14,19 X17,14,18,15 X19,12,20,13 X15,6,16,7 |
| Gauss code | -1, 4, -3, 1, -2, 10, -5, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, 7, -9, 6 |
| Dowker-Thistlethwaite code | 4 8 10 16 2 20 18 6 14 12 |
| Conway Notation | [24112] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{12, 6}, {5, 10}, {11, 7}, {6, 8}, {10, 12}, {7, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 9}, {8, 11}, {9, 1}] |
[edit Notes on presentations of 10 36]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 36"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,10,6,11 X3948 X9,3,10,2 X7,16,8,17 X11,20,12,1 X13,18,14,19 X17,14,18,15 X19,12,20,13 X15,6,16,7 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 10, -5, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, 7, -9, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 16 2 20 18 6 14 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[24112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{-1,-1,-1,-2,1,-2,-3,2,-3,4,-3,4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 6}, {5, 10}, {11, 7}, {6, 8}, {10, 12}, {7, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 9}, {8, 11}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 t^2+13 t-19+13 t^{-1} -3 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^4+z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 51, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+4 q^{-1} -6 q^{-2} +8 q^{-3} -8 q^{-4} +8 q^{-5} -6 q^{-6} +4 q^{-7} -3 q^{-8} + q^{-9} } |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 36"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 t^2+13 t-19+13 t^{-1} -3 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^4+z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 51, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+4 q^{-1} -6 q^{-2} +8 q^{-3} -8 q^{-4} +8 q^{-5} -6 q^{-6} +4 q^{-7} -3 q^{-8} + q^{-9} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a230, K11n29,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 36"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 t^2+13 t-19+13 t^{-1} -3 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+4 q^{-1} -6 q^{-2} +8 q^{-3} -8 q^{-4} +8 q^{-5} -6 q^{-6} +4 q^{-7} -3 q^{-8} + q^{-9} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a230, K11n29,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 36. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-2 q^3+5 q-7+ q^{-1} +12 q^{-2} -18 q^{-3} +5 q^{-4} +22 q^{-5} -34 q^{-6} +9 q^{-7} +35 q^{-8} -47 q^{-9} +7 q^{-10} +44 q^{-11} -47 q^{-12} - q^{-13} +44 q^{-14} -36 q^{-15} -9 q^{-16} +36 q^{-17} -20 q^{-18} -13 q^{-19} +23 q^{-20} -6 q^{-21} -10 q^{-22} +9 q^{-23} -3 q^{-25} + q^{-26} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-2 q^8+q^6+4 q^5-5 q^4-3 q^3+3 q^2+8 q-6-6 q^{-1} +3 q^{-2} +7 q^{-3} -6 q^{-4} +3 q^{-5} +4 q^{-6} -10 q^{-7} -12 q^{-8} +28 q^{-9} +21 q^{-10} -42 q^{-11} -39 q^{-12} +57 q^{-13} +54 q^{-14} -58 q^{-15} -79 q^{-16} +63 q^{-17} +88 q^{-18} -48 q^{-19} -103 q^{-20} +39 q^{-21} +101 q^{-22} -16 q^{-23} -105 q^{-24} + q^{-25} +95 q^{-26} +22 q^{-27} -88 q^{-28} -40 q^{-29} +75 q^{-30} +55 q^{-31} -56 q^{-32} -68 q^{-33} +40 q^{-34} +67 q^{-35} -15 q^{-36} -67 q^{-37} +2 q^{-38} +52 q^{-39} +12 q^{-40} -38 q^{-41} -16 q^{-42} +22 q^{-43} +16 q^{-44} -12 q^{-45} -10 q^{-46} +4 q^{-47} +5 q^{-48} -3 q^{-50} + q^{-51} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-2 q^{15}+q^{13}+6 q^{11}-9 q^{10}-q^9+q^8+23 q^6-21 q^5-6 q^4-8 q^3-4 q^2+61 q-26-12 q^{-1} -41 q^{-2} -30 q^{-3} +123 q^{-4} - q^{-5} +2 q^{-6} -107 q^{-7} -115 q^{-8} +185 q^{-9} +80 q^{-10} +83 q^{-11} -187 q^{-12} -290 q^{-13} +190 q^{-14} +194 q^{-15} +264 q^{-16} -213 q^{-17} -516 q^{-18} +97 q^{-19} +260 q^{-20} +489 q^{-21} -141 q^{-22} -681 q^{-23} -42 q^{-24} +220 q^{-25} +644 q^{-26} -14 q^{-27} -717 q^{-28} -135 q^{-29} +114 q^{-30} +671 q^{-31} +88 q^{-32} -644 q^{-33} -150 q^{-34} -7 q^{-35} +599 q^{-36} +153 q^{-37} -509 q^{-38} -122 q^{-39} -122 q^{-40} +466 q^{-41} +192 q^{-42} -329 q^{-43} -63 q^{-44} -226 q^{-45} +284 q^{-46} +193 q^{-47} -135 q^{-48} +35 q^{-49} -275 q^{-50} +89 q^{-51} +121 q^{-52} +5 q^{-53} +154 q^{-54} -227 q^{-55} -47 q^{-56} +34 q^{-58} +222 q^{-59} -106 q^{-60} -70 q^{-61} -86 q^{-62} -18 q^{-63} +188 q^{-64} -6 q^{-65} -19 q^{-66} -83 q^{-67} -60 q^{-68} +95 q^{-69} +22 q^{-70} +20 q^{-71} -36 q^{-72} -47 q^{-73} +28 q^{-74} +8 q^{-75} +17 q^{-76} -5 q^{-77} -17 q^{-78} +4 q^{-79} +5 q^{-81} -3 q^{-83} + q^{-84} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




