T(6,5)
|
|
Visit T(6,5)'s page at Knotilus!
Visit T(6,5)'s page at the original Knot Atlas! |
T(6,5) Further Notes and Views
Knot presentations
Planar diagram presentation | X19,29,20,28 X10,30,11,29 X1,31,2,30 X40,32,41,31 X11,21,12,20 X2,22,3,21 X41,23,42,22 X32,24,33,23 X3,13,4,12 X42,14,43,13 X33,15,34,14 X24,16,25,15 X43,5,44,4 X34,6,35,5 X25,7,26,6 X16,8,17,7 X35,45,36,44 X26,46,27,45 X17,47,18,46 X8,48,9,47 X27,37,28,36 X18,38,19,37 X9,39,10,38 X48,40,1,39 |
Gauss code | -3, -6, -9, 13, 14, 15, 16, -20, -23, -2, -5, 9, 10, 11, 12, -16, -19, -22, -1, 5, 6, 7, 8, -12, -15, -18, -21, 1, 2, 3, 4, -8, -11, -14, -17, 21, 22, 23, 24, -4, -7, -10, -13, 17, 18, 19, 20, -24 |
Dowker-Thistlethwaite code | 30 12 -34 -16 38 20 -42 -24 46 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 4 -26 -8 |
Conway Notation | Data:T(6,5)/Conway Notation |
Knot presentations
Planar diagram presentation | X19,29,20,28 X10,30,11,29 X1,31,2,30 X40,32,41,31 X11,21,12,20 X2,22,3,21 X41,23,42,22 X32,24,33,23 X3,13,4,12 X42,14,43,13 X33,15,34,14 X24,16,25,15 X43,5,44,4 X34,6,35,5 X25,7,26,6 X16,8,17,7 X35,45,36,44 X26,46,27,45 X17,47,18,46 X8,48,9,47 X27,37,28,36 X18,38,19,37 X9,39,10,38 X48,40,1,39 |
Gauss code | |
Dowker-Thistlethwaite code | 30 12 -34 -16 38 20 -42 -24 46 28 -2 -32 6 36 -10 -40 14 44 -18 -48 22 4 -26 -8 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(6,5)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, 16 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(6,5)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3: | (35, 175) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 16 is the signature of T(6,5). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | χ | |||||||||
41 | 1 | 1 | 0 | |||||||||||||||||||||
39 | 1 | -1 | ||||||||||||||||||||||
37 | 2 | 1 | -1 | |||||||||||||||||||||
35 | 2 | 1 | -1 | |||||||||||||||||||||
33 | 1 | 1 | 1 | -1 | ||||||||||||||||||||
31 | 1 | 1 | 2 | 0 | ||||||||||||||||||||
29 | 1 | 1 | 1 | 1 | ||||||||||||||||||||
27 | 1 | 1 | 1 | 1 | ||||||||||||||||||||
25 | 1 | 1 | ||||||||||||||||||||||
23 | 1 | 1 | ||||||||||||||||||||||
21 | 1 | 1 | ||||||||||||||||||||||
19 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[6, 5]] |
Out[2]= | 24 |
In[3]:= | PD[TorusKnot[6, 5]] |
Out[3]= | PD[X[19, 29, 20, 28], X[10, 30, 11, 29], X[1, 31, 2, 30],X[40, 32, 41, 31], X[11, 21, 12, 20], X[2, 22, 3, 21], X[41, 23, 42, 22], X[32, 24, 33, 23], X[3, 13, 4, 12], X[42, 14, 43, 13], X[33, 15, 34, 14], X[24, 16, 25, 15], X[43, 5, 44, 4], X[34, 6, 35, 5], X[25, 7, 26, 6], X[16, 8, 17, 7], X[35, 45, 36, 44], X[26, 46, 27, 45], X[17, 47, 18, 46], X[8, 48, 9, 47], X[27, 37, 28, 36], X[18, 38, 19, 37],X[9, 39, 10, 38], X[48, 40, 1, 39]] |
In[4]:= | GaussCode[TorusKnot[6, 5]] |
Out[4]= | GaussCode[-3, -6, -9, 13, 14, 15, 16, -20, -23, -2, -5, 9, 10, 11, 12,-16, -19, -22, -1, 5, 6, 7, 8, -12, -15, -18, -21, 1, 2, 3, 4, -8,-11, -14, -17, 21, 22, 23, 24, -4, -7, -10, -13, 17, 18, 19, 20, -24] |
In[5]:= | BR[TorusKnot[6, 5]] |
Out[5]= | BR[5, {1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}] |
In[6]:= | alex = Alexander[TorusKnot[6, 5]][t] |
Out[6]= | -10 -9 -5 -3 3 5 9 10 1 + t - t + t - t - t + t - t + t |
In[7]:= | Conway[TorusKnot[6, 5]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[6, 5]], KnotSignature[TorusKnot[6, 5]]} |
Out[9]= | {5, 16} |
In[10]:= | J=Jones[TorusKnot[6, 5]][q] |
Out[10]= | 10 12 14 17 19 q + q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[6, 5]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[6, 5]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[6, 5]], Vassiliev[3][TorusKnot[6, 5]]} |
Out[14]= | {0, 175} |
In[15]:= | Kh[TorusKnot[6, 5]][q, t] |
Out[15]= | 19 21 23 2 27 3 25 4 27 4 29 5 31 5 |