T(35,2)

From Knot Atlas
Revision as of 20:25, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


T(7,6).jpg

T(7,6)

T(9,5).jpg

T(9,5)

T(35,2).jpg Visit T(35,2)'s page at Knotilus!

Visit T(35,2)'s page at the original Knot Atlas!

T(35,2) Quick Notes


T(35,2) Further Notes and Views

Knot presentations

Planar diagram presentation X29,65,30,64 X65,31,66,30 X31,67,32,66 X67,33,68,32 X33,69,34,68 X69,35,70,34 X35,1,36,70 X1,37,2,36 X37,3,38,2 X3,39,4,38 X39,5,40,4 X5,41,6,40 X41,7,42,6 X7,43,8,42 X43,9,44,8 X9,45,10,44 X45,11,46,10 X11,47,12,46 X47,13,48,12 X13,49,14,48 X49,15,50,14 X15,51,16,50 X51,17,52,16 X17,53,18,52 X53,19,54,18 X19,55,20,54 X55,21,56,20 X21,57,22,56 X57,23,58,22 X23,59,24,58 X59,25,60,24 X25,61,26,60 X61,27,62,26 X27,63,28,62 X63,29,64,28
Gauss code -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -34, 35, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, -35, 1, -2, 3, -4, 5, -6, 7
Dowker-Thistlethwaite code 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Conway Notation Data:T(35,2)/Conway Notation

Knot presentations

Planar diagram presentation X29,65,30,64 X65,31,66,30 X31,67,32,66 X67,33,68,32 X33,69,34,68 X69,35,70,34 X35,1,36,70 X1,37,2,36 X37,3,38,2 X3,39,4,38 X39,5,40,4 X5,41,6,40 X41,7,42,6 X7,43,8,42 X43,9,44,8 X9,45,10,44 X45,11,46,10 X11,47,12,46 X47,13,48,12 X13,49,14,48 X49,15,50,14 X15,51,16,50 X51,17,52,16 X17,53,18,52 X53,19,54,18 X19,55,20,54 X55,21,56,20 X21,57,22,56 X57,23,58,22 X23,59,24,58 X59,25,60,24 X25,61,26,60 X61,27,62,26 X27,63,28,62 X63,29,64,28
Gauss code
Dowker-Thistlethwaite code 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 35, 34 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(35,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(35,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (153, 1785)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(35,2)/V 2,1 Data:T(35,2)/V 3,1 Data:T(35,2)/V 4,1 Data:T(35,2)/V 4,2 Data:T(35,2)/V 4,3 Data:T(35,2)/V 5,1 Data:T(35,2)/V 5,2 Data:T(35,2)/V 5,3 Data:T(35,2)/V 5,4 Data:T(35,2)/V 6,1 Data:T(35,2)/V 6,2 Data:T(35,2)/V 6,3 Data:T(35,2)/V 6,4 Data:T(35,2)/V 6,5 Data:T(35,2)/V 6,6 Data:T(35,2)/V 6,7 Data:T(35,2)/V 6,8 Data:T(35,2)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 34 is the signature of T(35,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
01234567891011121314151617181920212223242526272829303132333435χ
105                                   1-1
103                                    0
101                                 11 0
99                                    0
97                               11   0
95                                    0
93                             11     0
91                                    0
89                           11       0
87                                    0
85                         11         0
83                                    0
81                       11           0
79                                    0
77                     11             0
75                                    0
73                   11               0
71                                    0
69                 11                 0
67                                    0
65               11                   0
63                                    0
61             11                     0
59                                    0
57           11                       0
55                                    0
53         11                         0
51                                    0
49       11                           0
47                                    0
45     11                             0
43                                    0
41   11                               0
39                                    0
37  1                                 1
351                                   1
331                                   1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[35, 2]]
Out[2]=  
35
In[3]:=
PD[TorusKnot[35, 2]]
Out[3]=  
PD[X[29, 65, 30, 64], X[65, 31, 66, 30], X[31, 67, 32, 66], 
 X[67, 33, 68, 32], X[33, 69, 34, 68], X[69, 35, 70, 34], 

 X[35, 1, 36, 70], X[1, 37, 2, 36], X[37, 3, 38, 2], X[3, 39, 4, 38], 

 X[39, 5, 40, 4], X[5, 41, 6, 40], X[41, 7, 42, 6], X[7, 43, 8, 42], 

 X[43, 9, 44, 8], X[9, 45, 10, 44], X[45, 11, 46, 10], 

 X[11, 47, 12, 46], X[47, 13, 48, 12], X[13, 49, 14, 48], 

 X[49, 15, 50, 14], X[15, 51, 16, 50], X[51, 17, 52, 16], 

 X[17, 53, 18, 52], X[53, 19, 54, 18], X[19, 55, 20, 54], 

 X[55, 21, 56, 20], X[21, 57, 22, 56], X[57, 23, 58, 22], 

 X[23, 59, 24, 58], X[59, 25, 60, 24], X[25, 61, 26, 60], 

X[61, 27, 62, 26], X[27, 63, 28, 62], X[63, 29, 64, 28]]
In[4]:=
GaussCode[TorusKnot[35, 2]]
Out[4]=  
GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, 
 -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -34, 35, -1, 2, 

 -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 

 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, 

-35, 1, -2, 3, -4, 5, -6, 7]
In[5]:=
BR[TorusKnot[35, 2]]
Out[5]=  
BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[35, 2]][t]
Out[6]=  
      -17    -16    -15    -14    -13    -12    -11    -10    -9

-1 + t - t + t - t + t - t + t - t + t -

  -8    -7    -6    -5    -4    -3    -2   1        2    3    4    5
 t   + t   - t   + t   - t   + t   - t   + - + t - t  + t  - t  + t  - 
                                           t

  6    7    8    9    10    11    12    13    14    15    16    17
t + t - t + t - t + t - t + t - t + t - t + t
In[7]:=
Conway[TorusKnot[35, 2]][z]
Out[7]=  
         2         4          6           8           10

1 + 153 z + 3876 z + 38760 z + 203490 z + 646646 z +

          12            14            16            18           20
 1352078 z   + 1961256 z   + 2042975 z   + 1562275 z   + 888030 z   + 

         22           24          26         28        30       32
 376740 z   + 118755 z   + 27405 z   + 4495 z   + 496 z   + 33 z   + 

  34
z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[TorusKnot[35, 2]], KnotSignature[TorusKnot[35, 2]]}
Out[9]=  
{35, 34}
In[10]:=
J=Jones[TorusKnot[35, 2]][q]
Out[10]=  
 17    19    20    21    22    23    24    25    26    27    28    29

q + q - q + q - q + q - q + q - q + q - q + q -

  30    31    32    33    34    35    36    37    38    39    40
 q   + q   - q   + q   - q   + q   - q   + q   - q   + q   - q   + 

  41    42    43    44    45    46    47    48    49    50    51    52
q - q + q - q + q - q + q - q + q - q + q - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[TorusKnot[35, 2]][q]
Out[12]=  
NotAvailable
In[13]:=
Kauffman[TorusKnot[35, 2]][a, z]
Out[13]=  
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[35, 2]], Vassiliev[3][TorusKnot[35, 2]]}
Out[14]=  
{0, 1785}
In[15]:=
Kh[TorusKnot[35, 2]][q, t]
Out[15]=  
 33    35    37  2    41  3    41  4    45  5    45  6    49  7

q + q + q t + q t + q t + q t + q t + q t +

  49  8    53  9    53  10    57  11    57  12    61  13    61  14
 q   t  + q   t  + q   t   + q   t   + q   t   + q   t   + q   t   + 

  65  15    65  16    69  17    69  18    73  19    73  20    77  21
 q   t   + q   t   + q   t   + q   t   + q   t   + q   t   + q   t   + 

  77  22    81  23    81  24    85  25    85  26    89  27    89  28
 q   t   + q   t   + q   t   + q   t   + q   t   + q   t   + q   t   + 

  93  29    93  30    97  31    97  32    101  33    101  34    105  35
q t + q t + q t + q t + q t + q t + q t