K11a333

From Knot Atlas
Revision as of 16:11, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a332.gif

K11a332

K11a334.gif

K11a334

K11a333.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a333 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X14,3,15,4 X12,5,13,6 X16,8,17,7 X20,9,21,10 X18,11,19,12 X4,13,5,14 X2,15,3,16 X22,18,1,17 X10,19,11,20 X8,21,9,22
Gauss code 1, -8, 2, -7, 3, -1, 4, -11, 5, -10, 6, -3, 7, -2, 8, -4, 9, -6, 10, -5, 11, -9
Dowker-Thistlethwaite code 6 14 12 16 20 18 4 2 22 10 8
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a333 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a333's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 65, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a333/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a333/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_33,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (0, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a333. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
7           1-1
5          2 2
3         31 -2
1        52  3
-1       54   -1
-3      54    1
-5     45     1
-7    45      -1
-9   24       2
-11  14        -3
-13 12         1
-15 1          -1
-171           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a332.gif

K11a332

K11a334.gif

K11a334