K11a102

From Knot Atlas
Revision as of 16:22, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a101.gif

K11a101

K11a103.gif

K11a103

K11a102.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a102 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X14,6,15,5 X12,8,13,7 X18,9,19,10 X2,11,3,12 X6,14,7,13 X20,16,21,15 X22,18,1,17 X8,19,9,20 X16,22,17,21
Gauss code 1, -6, 2, -1, 3, -7, 4, -10, 5, -2, 6, -4, 7, -3, 8, -11, 9, -5, 10, -8, 11, -9
Dowker-Thistlethwaite code 4 10 14 12 18 2 6 20 22 8 16
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a102 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a102/ThurstonBennequinNumber
Hyperbolic Volume 14.6861
A-Polynomial See Data:K11a102/A-polynomial

[edit Notes for K11a102's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11a102's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 99, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a102/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a102/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a181, K11a199,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-3, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a102. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          2 2
13         41 -3
11        72  5
9       74   -3
7      97    2
5     77     0
3    69      -3
1   58       3
-1  15        -4
-3 15         4
-5 1          -1
-71           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a101.gif

K11a101

K11a103.gif

K11a103