10_153 is not
-colourable for any
. See The Determinant and the Signature.
Knot presentations
Planar diagram presentation
|
X4251 X8493 X12,6,13,5 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X6,12,7,11 X2837
|
Gauss code
|
1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7
|
Dowker-Thistlethwaite code
|
4 8 12 2 -16 6 -18 -20 -10 -14
|
Conway Notation
|
[(3,2)-(21,2)]
|
Minimum Braid Representative
|
A Morse Link Presentation
|
An Arc Presentation
|
Length is 11, width is 4,
Braid index is 4
|
|
![10 153 AP.gif](/images/8/87/10_153_AP.gif) [{3, 9}, {2, 4}, {1, 3}, {10, 5}, {9, 2}, {11, 6}, {5, 7}, {4, 10}, {6, 8}, {7, 11}, {8, 1}]
|
[edit Notes on presentations of 10 153]
|
|
A part of a knot and a part of a graph.
|
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 153"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X12,6,13,5 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X6,12,7,11 X2837
|
Out[5]=
|
1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7
|
Out[6]=
|
4 8 12 2 -16 6 -18 -20 -10 -14
|
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
In[11]:=
|
Show[BraidPlot[br]]
|
In[12]:=
|
Show[DrawMorseLink[K]]
|
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 9}, {2, 4}, {1, 3}, {10, 5}, {9, 2}, {11, 6}, {5, 7}, {4, 10}, {6, 8}, {7, 11}, {8, 1}]
|
Four dimensional invariants
Polynomial invariants
Alexander polynomial |
![{\displaystyle t^{3}-t^{2}-t+3-t^{-1}-t^{-2}+t^{-3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/085ad5e32659dae8e1d4054d83899d77967a1691) |
Conway polynomial |
![{\displaystyle z^{6}+5z^{4}+4z^{2}+1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b9d21ed89728886cc7ac56f598243a5d77e33420) |
2nd Alexander ideal (db, data sources) |
![{\displaystyle \{1\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5acdcac635f883f8b4f0a01aa03b16b22f23b124) |
Determinant and Signature |
{ 1, 0 } |
Jones polynomial |
![{\displaystyle -q^{4}+q^{3}-q^{2}+q+1+q^{-2}-q^{-3}+q^{-4}-q^{-5}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bad4c61fdb0fcc0bafe5fe0dbd4abbf8d2bf6495) |
HOMFLY-PT polynomial (db, data sources) |
![{\displaystyle z^{6}-z^{4}a^{-2}+6z^{4}-a^{4}z^{2}-a^{2}z^{2}-4z^{2}a^{-2}+10z^{2}-a^{4}-a^{2}-3a^{-2}+6}](https://wikimedia.org/api/rest_v1/media/math/render/svg/52ec87d34b55f53619f313bb747759b77136b47c) |
Kauffman polynomial (db, data sources) |
![{\displaystyle z^{8}a^{-2}+z^{8}+az^{7}+2z^{7}a^{-1}+z^{7}a^{-3}+a^{4}z^{6}-6z^{6}a^{-2}-7z^{6}+a^{5}z^{5}+a^{3}z^{5}-7az^{5}-13z^{5}a^{-1}-6z^{5}a^{-3}-4a^{4}z^{4}+10z^{4}a^{-2}+14z^{4}-4a^{5}z^{3}-4a^{3}z^{3}+12az^{3}+22z^{3}a^{-1}+10z^{3}a^{-3}+3a^{4}z^{2}-2a^{2}z^{2}-7z^{2}a^{-2}-12z^{2}+3a^{5}z+2a^{3}z-6az-10za^{-1}-5za^{-3}-a^{4}+a^{2}+3a^{-2}+6}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8db5f65dedd7a6b24262dbf0f2c71c5f5951684a) |
The A2 invariant |
![{\displaystyle -q^{16}-q^{12}-q^{10}+2q^{4}+2q^{2}+3+2q^{-2}-q^{-8}-q^{-10}-q^{-12}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2597ebd57a2e6dba4ebab62957f13502b62ea495) |
The G2 invariant |
![{\displaystyle q^{80}+q^{76}-q^{74}+q^{70}-2q^{68}+q^{64}-3q^{62}+q^{60}-q^{58}-4q^{56}+5q^{54}-5q^{52}+q^{50}+q^{48}-5q^{46}+5q^{44}-3q^{42}-2q^{40}+2q^{38}-4q^{36}+q^{34}+3q^{32}-5q^{30}+3q^{28}-q^{24}+2q^{22}-2q^{20}+2q^{18}+4q^{14}-2q^{12}+3q^{10}+4q^{8}-q^{6}+5q^{4}-q^{2}+2+6q^{-2}-q^{-4}+2q^{-6}+4q^{-8}-2q^{-10}+6q^{-12}-q^{-14}-3q^{-16}+4q^{-18}-4q^{-20}+2q^{-22}-3q^{-26}+q^{-28}-q^{-30}-3q^{-32}-2q^{-36}-q^{-38}-3q^{-42}-q^{-48}-q^{-52}+q^{-56}+q^{-60}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/261bbef261f6fd4a251ed2921514a45868058310) |
Further Quantum Invariants
Further quantum knot invariants for 10_153.
A1 Invariants.
Weight
|
Invariant
|
1
|
|
2
|
|
3
|
|
A2 Invariants.
Weight
|
Invariant
|
1,0
|
|
1,1
|
|
2,0
|
|
A3 Invariants.
Weight
|
Invariant
|
0,1,0
|
|
1,0,0
|
|
A4 Invariants.
Weight
|
Invariant
|
0,1,0,0
|
|
1,0,0,0
|
|
B2 Invariants.
Weight
|
Invariant
|
0,1
|
|
1,0
|
|
D4 Invariants.
Weight
|
Invariant
|
1,0,0,0
|
|
G2 Invariants.
Weight
|
Invariant
|
1,0
|
|
.
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 153"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{}
Same Jones Polynomial (up to mirroring,
):
{}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["10 153"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , }
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 153. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
-5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | χ |
9 | | | | | | | | | | | 1 | -1 |
7 | | | | | | | | | | | | 0 |
5 | | | | | | | | | 1 | 1 | | 0 |
3 | | | | | | | 1 | 1 | | | | 0 |
1 | | | | | | 1 | | 1 | | | | 2 |
-1 | | | | | 1 | 3 | 1 | | | | | 1 |
-3 | | | | 1 | | | | | | | | 1 |
-5 | | | | 1 | 1 | | | | | | | 0 |
-7 | | 1 | 1 | | | | | | | | | 0 |
-9 | | | | | | | | | | | | 0 |
-11 | 1 | | | | | | | | | | | -1 |
|
The Coloured Jones Polynomials