10 76
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 76's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X14,10,15,9 X12,3,13,4 X2,13,3,14 X18,6,19,5 X20,8,1,7 X6,20,7,19 X8,18,9,17 X16,12,17,11 X10,16,11,15 |
Gauss code | 1, -4, 3, -1, 5, -7, 6, -8, 2, -10, 9, -3, 4, -2, 10, -9, 8, -5, 7, -6 |
Dowker-Thistlethwaite code | 4 12 18 20 14 16 2 10 8 6 |
Conway Notation | [3,3,2++] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{5, 12}, {6, 3}, {1, 5}, {4, 2}, {3, 7}, {2, 6}, {10, 4}, {9, 11}, {8, 10}, {7, 9}, {12, 8}, {11, 1}] |
[edit Notes on presentations of 10 76]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 76"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X14,10,15,9 X12,3,13,4 X2,13,3,14 X18,6,19,5 X20,8,1,7 X6,20,7,19 X8,18,9,17 X16,12,17,11 X10,16,11,15 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, 5, -7, 6, -8, 2, -10, 9, -3, 4, -2, 10, -9, 8, -5, 7, -6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 18 20 14 16 2 10 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3,3,2++] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,1,1,2,-1,-3,2,2,2,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{5, 12}, {6, 3}, {1, 5}, {4, 2}, {3, 7}, {2, 6}, {10, 4}, {9, 11}, {8, 10}, {7, 9}, {12, 8}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+7 t^2-12 t+15-12 t^{-1} +7 t^{-2} -2 t^{-3} } |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 57, 4 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-4} -z^6 a^{-6} +z^4 a^{-2} -4 z^4 a^{-4} -3 z^4 a^{-6} +z^4 a^{-8} +4 z^2 a^{-2} -6 z^2 a^{-4} -2 z^2 a^{-6} +2 z^2 a^{-8} +4 a^{-2} -4 a^{-4} + a^{-8} } |
Kauffman polynomial (db, data sources) | |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q+3 q^{-3} -2 q^{-5} +2 q^{-7} -2 q^{-9} - q^{-11} + q^{-13} -2 q^{-15} +3 q^{-17} -2 q^{-19} + q^{-21} } |
2 | |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}+2 q^7-q^5-q^3+q+6 q^{-1} -3 q^{-3} -10 q^{-5} +21 q^{-9} +3 q^{-11} -29 q^{-13} -18 q^{-15} +36 q^{-17} +37 q^{-19} -36 q^{-21} -54 q^{-23} +25 q^{-25} +73 q^{-27} -9 q^{-29} -78 q^{-31} -12 q^{-33} +79 q^{-35} +25 q^{-37} -67 q^{-39} -43 q^{-41} +58 q^{-43} +47 q^{-45} -37 q^{-47} -50 q^{-49} +17 q^{-51} +50 q^{-53} +4 q^{-55} -46 q^{-57} -31 q^{-59} +38 q^{-61} +52 q^{-63} -23 q^{-65} -74 q^{-67} +10 q^{-69} +83 q^{-71} +9 q^{-73} -82 q^{-75} -22 q^{-77} +70 q^{-79} +33 q^{-81} -53 q^{-83} -34 q^{-85} +34 q^{-87} +26 q^{-89} -17 q^{-91} -20 q^{-93} +9 q^{-95} +13 q^{-97} -5 q^{-99} -6 q^{-101} + q^{-103} +3 q^{-105} -2 q^{-109} + q^{-111} } |
4 | |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{45}-q^{37}-q^{35}+2 q^{33}+3 q^{27}-5 q^{23}-2 q^{19}-q^{17}+10 q^{15}+10 q^{13}-4 q^{11}-9 q^9-20 q^7-18 q^5+15 q^3+43 q+39 q^{-1} +6 q^{-3} -60 q^{-5} -103 q^{-7} -50 q^{-9} +64 q^{-11} +165 q^{-13} +168 q^{-15} -4 q^{-17} -237 q^{-19} -315 q^{-21} -143 q^{-23} +213 q^{-25} +505 q^{-27} +420 q^{-29} -80 q^{-31} -615 q^{-33} -751 q^{-35} -264 q^{-37} +569 q^{-39} +1085 q^{-41} +751 q^{-43} -298 q^{-45} -1258 q^{-47} -1298 q^{-49} -243 q^{-51} +1179 q^{-53} +1780 q^{-55} +920 q^{-57} -819 q^{-59} -2018 q^{-61} -1629 q^{-63} +196 q^{-65} +1996 q^{-67} +2188 q^{-69} +519 q^{-71} -1668 q^{-73} -2508 q^{-75} -1203 q^{-77} +1184 q^{-79} +2542 q^{-81} +1713 q^{-83} -602 q^{-85} -2384 q^{-87} -2002 q^{-89} +130 q^{-91} +2039 q^{-93} +2073 q^{-95} +269 q^{-97} -1690 q^{-99} -2005 q^{-101} -479 q^{-103} +1337 q^{-105} +1828 q^{-107} +644 q^{-109} -1045 q^{-111} -1666 q^{-113} -744 q^{-115} +779 q^{-117} +1507 q^{-119} +879 q^{-121} -482 q^{-123} -1387 q^{-125} -1092 q^{-127} +127 q^{-129} +1251 q^{-131} +1354 q^{-133} +348 q^{-135} -1024 q^{-137} -1665 q^{-139} -924 q^{-141} +686 q^{-143} +1876 q^{-145} +1573 q^{-147} -168 q^{-149} -1950 q^{-151} -2164 q^{-153} -479 q^{-155} +1770 q^{-157} +2602 q^{-159} +1171 q^{-161} -1359 q^{-163} -2742 q^{-165} -1762 q^{-167} +739 q^{-169} +2579 q^{-171} +2132 q^{-173} -104 q^{-175} -2104 q^{-177} -2191 q^{-179} -454 q^{-181} +1477 q^{-183} +1971 q^{-185} +780 q^{-187} -854 q^{-189} -1530 q^{-191} -867 q^{-193} +345 q^{-195} +1034 q^{-197} +772 q^{-199} -47 q^{-201} -607 q^{-203} -545 q^{-205} -93 q^{-207} +295 q^{-209} +339 q^{-211} +114 q^{-213} -131 q^{-215} -179 q^{-217} -69 q^{-219} +45 q^{-221} +78 q^{-223} +38 q^{-225} -13 q^{-227} -40 q^{-229} -14 q^{-231} +13 q^{-233} +13 q^{-235} +3 q^{-237} -4 q^{-239} -4 q^{-241} -7 q^{-243} +3 q^{-245} +7 q^{-247} - q^{-249} -2 q^{-251} + q^{-253} - q^{-255} -2 q^{-257} +3 q^{-259} -2 q^{-263} + q^{-265} } |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4+6-4 q^{-2} +18 q^{-4} -20 q^{-6} +42 q^{-8} -62 q^{-10} +93 q^{-12} -140 q^{-14} +182 q^{-16} -240 q^{-18} +272 q^{-20} -302 q^{-22} +288 q^{-24} -244 q^{-26} +164 q^{-28} -46 q^{-30} -92 q^{-32} +246 q^{-34} -378 q^{-36} +502 q^{-38} -576 q^{-40} +612 q^{-42} -587 q^{-44} +512 q^{-46} -402 q^{-48} +254 q^{-50} -107 q^{-52} -40 q^{-54} +160 q^{-56} -244 q^{-58} +292 q^{-60} -300 q^{-62} +282 q^{-64} -246 q^{-66} +195 q^{-68} -144 q^{-70} +102 q^{-72} -66 q^{-74} +38 q^{-76} -20 q^{-78} +10 q^{-80} -4 q^{-82} + q^{-84} } |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+3 q^{-4} -2 q^{-6} +6 q^{-8} -6 q^{-10} +11 q^{-12} -11 q^{-14} +14 q^{-16} -14 q^{-18} +12 q^{-20} -10 q^{-22} +2 q^{-24} +2 q^{-26} -11 q^{-28} +16 q^{-30} -24 q^{-32} +27 q^{-34} -29 q^{-36} +27 q^{-38} -23 q^{-40} +17 q^{-42} -9 q^{-44} +3 q^{-46} +5 q^{-48} -10 q^{-50} +14 q^{-52} -15 q^{-54} +15 q^{-56} -13 q^{-58} +10 q^{-60} -7 q^{-62} +4 q^{-64} -2 q^{-66} + q^{-68} } |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} +3 q^{-6} -2 q^{-8} +3 q^{-10} - q^{-12} +7 q^{-16} -9 q^{-18} +14 q^{-20} -12 q^{-22} +12 q^{-24} + q^{-26} -12 q^{-28} +31 q^{-30} -40 q^{-32} +46 q^{-34} -33 q^{-36} + q^{-38} +33 q^{-40} -65 q^{-42} +80 q^{-44} -67 q^{-46} +28 q^{-48} +17 q^{-50} -59 q^{-52} +71 q^{-54} -63 q^{-56} +24 q^{-58} +17 q^{-60} -50 q^{-62} +46 q^{-64} -24 q^{-66} -19 q^{-68} +58 q^{-70} -75 q^{-72} +60 q^{-74} -21 q^{-76} -35 q^{-78} +87 q^{-80} -115 q^{-82} +106 q^{-84} -59 q^{-86} -3 q^{-88} +66 q^{-90} -101 q^{-92} +104 q^{-94} -68 q^{-96} +17 q^{-98} +32 q^{-100} -60 q^{-102} +55 q^{-104} -22 q^{-106} -19 q^{-108} +51 q^{-110} -52 q^{-112} +28 q^{-114} +11 q^{-116} -53 q^{-118} +76 q^{-120} -74 q^{-122} +48 q^{-124} -8 q^{-126} -33 q^{-128} +60 q^{-130} -64 q^{-132} +54 q^{-134} -28 q^{-136} +3 q^{-138} +15 q^{-140} -29 q^{-142} +28 q^{-144} -21 q^{-146} +12 q^{-148} -2 q^{-150} -3 q^{-152} +5 q^{-154} -6 q^{-156} +4 q^{-158} -2 q^{-160} + q^{-162} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 76"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^3+7 t^2-12 t+15-12 t^{-1} +7 t^{-2} -2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 57, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{-4} -z^6 a^{-6} +z^4 a^{-2} -4 z^4 a^{-4} -3 z^4 a^{-6} +z^4 a^{-8} +4 z^2 a^{-2} -6 z^2 a^{-4} -2 z^2 a^{-6} +2 z^2 a^{-8} +4 a^{-2} -4 a^{-4} + a^{-8} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 76"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-2, -6) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 76. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|