9 25

From Knot Atlas
Revision as of 20:45, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


9 24.gif

9_24

9 26.gif

9_26

9 25.gif Visit 9 25's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 25's page at Knotilus!

Visit 9 25's page at the original Knot Atlas!

9 25 Quick Notes


9 25 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3849 X5,12,6,13 X9,17,10,16 X13,18,14,1 X17,14,18,15 X15,11,16,10 X11,6,12,7 X7283
Gauss code -1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5
Dowker-Thistlethwaite code 4 8 12 2 16 6 18 10 14
Conway Notation [22,21,2]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-10][-1]
Hyperbolic Volume 11.3903
A-Polynomial See Data:9 25/A-polynomial

[edit Notes for 9 25's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 9 25's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 47, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (0, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 25. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-7-6-5-4-3-2-1012χ
3         11
1        1 -1
-1       41 3
-3      42  -2
-5     43   1
-7    44    0
-9   34     -1
-11  24      2
-13 13       -2
-15 2        2
-171         -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 25]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 25]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 17, 10, 16], 
 X[13, 18, 14, 1], X[17, 14, 18, 15], X[15, 11, 16, 10], 

X[11, 6, 12, 7], X[7, 2, 8, 3]]
In[4]:=
GaussCode[Knot[9, 25]]
Out[4]=  
GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5]
In[5]:=
BR[Knot[9, 25]]
Out[5]=  
BR[5, {-1, -1, 2, -1, -3, -2, -2, 4, -3, 4}]
In[6]:=
alex = Alexander[Knot[9, 25]][t]
Out[6]=  
      3    12             2

-17 - -- + -- + 12 t - 3 t

      2   t
t
In[7]:=
Conway[Knot[9, 25]][z]
Out[7]=  
       4
1 - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 25], Knot[11, NonAlternating, 134]}
In[9]:=
{KnotDet[Knot[9, 25]], KnotSignature[Knot[9, 25]]}
Out[9]=  
{47, -2}
In[10]:=
J=Jones[Knot[9, 25]][q]
Out[10]=  
      -8   3    5    7    8    8    7    5

-2 - q + -- - -- + -- - -- + -- - -- + - + q

           7    6    5    4    3    2   q
q q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 25], Knot[11, NonAlternating, 25]}
In[12]:=
A2Invariant[Knot[9, 25]][q]
Out[12]=  
  -26    -24    2     -18    2     2     2     -6    -4   3     4

-q - q + --- + q + --- - --- - --- + q - q + -- + q

               22           16    14    10                2
q q q q q
In[13]:=
Kauffman[Knot[9, 25]][a, z]
Out[13]=  
     2      4      6    8    3      5      7      9        2

1 - a - 3 a - 3 a - a - a z - a z + a z + a z - 2 z +

    2  2       4  2       6  2      8  2        3      3  3
 2 a  z  + 13 a  z  + 13 a  z  + 4 a  z  - 2 a z  + 3 a  z  + 

    5  3      7  3      9  3    4      2  4       4  4       6  4
 5 a  z  - 2 a  z  - 2 a  z  + z  - 3 a  z  - 15 a  z  - 18 a  z  - 

    8  4        5      3  5       5  5      7  5    9  5      2  6
 7 a  z  + 2 a z  - 3 a  z  - 10 a  z  - 4 a  z  + a  z  + 3 a  z  + 

    4  6      6  6      8  6      3  7      5  7      7  7    4  8
 6 a  z  + 6 a  z  + 3 a  z  + 3 a  z  + 6 a  z  + 3 a  z  + a  z  + 

  6  8
a z
In[14]:=
{Vassiliev[2][Knot[9, 25]], Vassiliev[3][Knot[9, 25]]}
Out[14]=  
{0, -1}
In[15]:=
Kh[Knot[9, 25]][q, t]
Out[15]=  
2    4     1        2        1        3        2        4        3

-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- +

3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4

q q t q t q t q t q t q t q t

   4       4       4       4      3      4     t          3  2
 ----- + ----- + ----- + ----- + ---- + ---- + - + q t + q  t
  9  3    7  3    7  2    5  2    5      3     q
q t q t q t q t q t q t