L11n218
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n218's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X8,9,1,10 X3,12,4,13 X22,16,9,15 X17,3,18,2 X21,4,22,5 X5,15,6,14 X13,21,14,20 X16,12,17,11 X19,7,20,6 X7,19,8,18 |
| Gauss code | {1, 5, -3, 6, -7, 10, -11, -2}, {2, -1, 9, 3, -8, 7, 4, -9, -5, 11, -10, 8, -6, -4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (u+1)^2 (v-1)}{u^{3/2} \sqrt{v}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{13/2}-q^{11/2}+q^{9/2}-q^{7/2}-q^{5/2}-\sqrt{q}+\frac{1}{\sqrt{q}}-\frac{1}{q^{3/2}} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^{-5} +3 z a^{-5} + a^{-5} z^{-1} -z^5 a^{-3} -5 z^3 a^{-3} -6 z a^{-3} -3 a^{-3} z^{-1} +a z+2 z a^{-1} +2 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^9 a^{-3} -z^9 a^{-5} -z^8 a^{-2} -2 z^8 a^{-4} -z^8 a^{-6} +7 z^7 a^{-3} +7 z^7 a^{-5} +7 z^6 a^{-2} +14 z^6 a^{-4} +7 z^6 a^{-6} -15 z^5 a^{-3} -15 z^5 a^{-5} -14 z^4 a^{-2} -28 z^4 a^{-4} -15 z^4 a^{-6} -z^4-a z^3+z^3 a^{-1} +15 z^3 a^{-3} +13 z^3 a^{-5} +10 z^2 a^{-2} +18 z^2 a^{-4} +11 z^2 a^{-6} +3 z^2+2 a z-3 z a^{-1} -11 z a^{-3} -6 z a^{-5} -3 a^{-2} -3 a^{-4} - a^{-6} +2 a^{-1} z^{-1} +3 a^{-3} z^{-1} + a^{-5} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



