L11n219
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n219's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X8,9,1,10 X3,12,4,13 X22,16,9,15 X17,3,18,2 X4,22,5,21 X14,5,15,6 X13,21,14,20 X16,12,17,11 X19,7,20,6 X7,19,8,18 |
| Gauss code | {1, 5, -3, -6, 7, 10, -11, -2}, {2, -1, 9, 3, -8, -7, 4, -9, -5, 11, -10, 8, 6, -4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) \left(t(1)^2+t(1)+1\right) (t(2)-1)}{t(1)^{3/2} \sqrt{t(2)}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{13/2}-q^{11/2}+q^{9/2}-2 q^{7/2}+q^{5/2}-q^{3/2}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^{-5} +3 z a^{-5} + a^{-5} z^{-1} -z^5 a^{-3} -5 z^3 a^{-3} -7 z a^{-3} -3 a^{-3} z^{-1} +z^3 a^{-1} +4 z a^{-1} +2 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^8 a^{-6} -7 z^6 a^{-6} +15 z^4 a^{-6} -10 z^2 a^{-6} + a^{-6} +z^9 a^{-5} -7 z^7 a^{-5} +16 z^5 a^{-5} -15 z^3 a^{-5} +6 z a^{-5} - a^{-5} z^{-1} +2 z^8 a^{-4} -13 z^6 a^{-4} +25 z^4 a^{-4} -16 z^2 a^{-4} +3 a^{-4} +z^9 a^{-3} -7 z^7 a^{-3} +17 z^5 a^{-3} -21 z^3 a^{-3} +13 z a^{-3} -3 a^{-3} z^{-1} +z^8 a^{-2} -6 z^6 a^{-2} +10 z^4 a^{-2} -7 z^2 a^{-2} +3 a^{-2} +z^5 a^{-1} -6 z^3 a^{-1} +7 z a^{-1} -2 a^{-1} z^{-1} -z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



