K11n164

From Knot Atlas
Revision as of 16:23, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

K11n163.gif

K11n163

K11n165.gif

K11n165

K11n164.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n164 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X3,11,4,10 X14,5,15,6 X16,8,17,7 X9,21,10,20 X11,5,12,4 X13,19,14,18 X2,15,3,16 X22,18,1,17 X19,13,20,12 X21,9,22,8
Gauss code 1, -8, -2, 6, 3, -1, 4, 11, -5, 2, -6, 10, -7, -3, 8, -4, 9, 7, -10, 5, -11, -9
Dowker-Thistlethwaite code 6 -10 14 16 -20 -4 -18 2 22 -12 -8
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n164 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11n164's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+5 t^2-10 t+13-10 t^{-1} +5 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6-z^4+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \left\{t^2-t+1\right\} }[/math]
Determinant and Signature { 45, 4 }
Jones polynomial [math]\displaystyle{ 2 q^8-5 q^7+6 q^6-8 q^5+8 q^4-6 q^3+6 q^2-3 q+1 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-4} +z^4 a^{-2} -3 z^4 a^{-4} +z^4 a^{-6} +2 z^2 a^{-2} -z^2 a^{-4} + a^{-2} +2 a^{-4} -3 a^{-6} + a^{-8} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-5} +z^9 a^{-7} +3 z^8 a^{-4} +4 z^8 a^{-6} +z^8 a^{-8} +3 z^7 a^{-3} +2 z^7 a^{-5} -z^7 a^{-7} +z^6 a^{-2} -7 z^6 a^{-4} -10 z^6 a^{-6} -2 z^6 a^{-8} -9 z^5 a^{-3} -12 z^5 a^{-5} -2 z^5 a^{-7} +z^5 a^{-9} -3 z^4 a^{-2} -z^4 a^{-4} +6 z^4 a^{-6} +4 z^4 a^{-8} +5 z^3 a^{-3} +9 z^3 a^{-5} +8 z^3 a^{-7} +4 z^3 a^{-9} +3 z^2 a^{-2} +2 z^2 a^{-4} -3 z^2 a^{-6} +2 z^2 a^{-10} -4 z a^{-5} -7 z a^{-7} -3 z a^{-9} - a^{-2} +2 a^{-4} +3 a^{-6} + a^{-8} }[/math]
The A2 invariant Data:K11n164/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n164/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {8_18, 9_24, K11n85,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ -\frac{34}{3} }[/math] [math]\displaystyle{ \frac{34}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -32 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 64 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\frac{136}{3} }[/math] [math]\displaystyle{ \frac{136}{3} }[/math] [math]\displaystyle{ -\frac{1649}{30} }[/math] [math]\displaystyle{ -\frac{4862}{15} }[/math] [math]\displaystyle{ \frac{21662}{45} }[/math] [math]\displaystyle{ \frac{1265}{18} }[/math] [math]\displaystyle{ \frac{2191}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11n164. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456χ
17        22
15       3 -3
13      32 1
11     53  -2
9    33   0
7   35    2
5  33     0
3 14      3
1 2       -2
-11        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n163.gif

K11n163

K11n165.gif

K11n165