In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Knot[10, 106]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 106]] |
Out[3]= | PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[10, 3, 11, 4], X[2, 15, 3, 16],
X[14, 5, 15, 6], X[4, 11, 5, 12], X[18, 10, 19, 9], X[20, 14, 1, 13],
X[8, 18, 9, 17], X[12, 20, 13, 19]] |
In[4]:= | GaussCode[Knot[10, 106]] |
Out[4]= | GaussCode[1, -4, 3, -6, 5, -1, 2, -9, 7, -3, 6, -10, 8, -5, 4, -2, 9,
-7, 10, -8] |
In[5]:= | BR[Knot[10, 106]] |
Out[5]= | BR[3, {1, 1, 1, -2, 1, -2, 1, 1, -2, -2}] |
In[6]:= | alex = Alexander[Knot[10, 106]][t] |
Out[6]= | -4 4 9 15 2 3 4
-17 - t + -- - -- + -- + 15 t - 9 t + 4 t - t
3 2 t
t t |
In[7]:= | Conway[Knot[10, 106]][z] |
Out[7]= | 2 4 6 8
1 - z - 5 z - 4 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 106]} |
In[9]:= | {KnotDet[Knot[10, 106]], KnotSignature[Knot[10, 106]]} |
Out[9]= | {75, 2} |
In[10]:= | J=Jones[Knot[10, 106]][q] |
Out[10]= | -3 3 6 2 3 4 5 6 7
-9 + q - -- + - + 12 q - 12 q + 12 q - 10 q + 6 q - 3 q + q
2 q
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 59], Knot[10, 106]} |
In[12]:= | A2Invariant[Knot[10, 106]][q] |
Out[12]= | -8 -6 2 -2 2 4 6 8 10 12 14
q - q + -- - q + 2 q - 2 q + 4 q - 2 q + q - q - 2 q +
4
q
16 18 20
2 q - q + q |
In[13]:= | Kauffman[Knot[10, 106]][a, z] |
Out[13]= | 2 2 2
-4 2 z z z 2 z 2 z 2 z 3 z
2 + a + -- + -- + -- - -- - --- - a z - 5 z - -- + ---- - ---- -
2 7 5 3 a 8 6 4
a a a a a a a
2 3 3 3 3 4
13 z 2 2 3 z 3 z 8 z 9 z 3 4 z
----- + 2 a z - ---- + ---- + ---- + ---- + 7 a z + 9 z + -- -
2 7 5 3 a 8
a a a a a
4 4 4 5 5 5 5
5 z 4 z 22 z 2 4 3 z 7 z 13 z 12 z
---- + ---- + ----- - 3 a z + ---- - ---- - ----- - ----- -
6 4 2 7 5 3 a
a a a a a a
6 6 6 7 7 7
5 6 5 z 6 z 23 z 2 6 6 z 4 z z
9 a z - 11 z + ---- - ---- - ----- + a z + ---- + ---- + -- +
6 4 2 5 3 a
a a a a a
8 8 9 9
7 8 5 z 9 z 2 z 2 z
3 a z + 4 z + ---- + ---- + ---- + ----
4 2 3 a
a a a |
In[14]:= | {Vassiliev[2][Knot[10, 106]], Vassiliev[3][Knot[10, 106]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[10, 106]][q, t] |
Out[15]= | 3 1 2 1 4 2 5 4 q
7 q + 6 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
7 4 5 3 3 3 3 2 2 q t t
q t q t q t q t q t
3 5 5 2 7 2 7 3 9 3 9 4
6 q t + 6 q t + 6 q t + 6 q t + 4 q t + 6 q t + 2 q t +
11 4 11 5 13 5 15 6
4 q t + q t + 2 q t + q t |