10 152
|
|
Visit 10 152's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 152's page at Knotilus! Visit 10 152's page at the original Knot Atlas! |
10 152 Quick Notes |
10 152 Further Notes and Views
Knot presentations
Planar diagram presentation | X1627 X3849 X5,12,6,13 X18,13,19,14 X16,9,17,10 X10,17,11,18 X20,15,1,16 X14,19,15,20 X7283 X11,4,12,5 |
Gauss code | -1, 9, -2, 10, -3, 1, -9, 2, 5, -6, -10, 3, 4, -8, 7, -5, 6, -4, 8, -7 |
Dowker-Thistlethwaite code | 6 8 12 2 -16 4 -18 -20 -10 -14 |
Conway Notation | [(3,2)-(3,2)] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 152"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 11, -6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (7, -15) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -6 is the signature of 10 152. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-10 | -9 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | χ | |||||||||
-7 | 1 | 1 | |||||||||||||||||||
-9 | 1 | 1 | |||||||||||||||||||
-11 | 1 | 1 | |||||||||||||||||||
-13 | 2 | 2 | |||||||||||||||||||
-15 | 1 | 1 | 1 | -1 | |||||||||||||||||
-17 | 2 | 2 | 0 | ||||||||||||||||||
-19 | 1 | 1 | 1 | -1 | |||||||||||||||||
-21 | 1 | 2 | -1 | ||||||||||||||||||
-23 | 1 | 1 | 0 | ||||||||||||||||||
-25 | 1 | -1 | |||||||||||||||||||
-27 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 152]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 152]] |
Out[3]= | PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 12, 6, 13], X[18, 13, 19, 14],X[16, 9, 17, 10], X[10, 17, 11, 18], X[20, 15, 1, 16],X[14, 19, 15, 20], X[7, 2, 8, 3], X[11, 4, 12, 5]] |
In[4]:= | GaussCode[Knot[10, 152]] |
Out[4]= | GaussCode[-1, 9, -2, 10, -3, 1, -9, 2, 5, -6, -10, 3, 4, -8, 7, -5, 6, -4, 8, -7] |
In[5]:= | BR[Knot[10, 152]] |
Out[5]= | BR[3, {-1, -1, -1, -2, -2, -1, -1, -2, -2, -2}] |
In[6]:= | alex = Alexander[Knot[10, 152]][t] |
Out[6]= | -4 -3 -2 4 2 3 4 |
In[7]:= | Conway[Knot[10, 152]][z] |
Out[7]= | 2 4 6 8 1 + 7 z + 13 z + 7 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 152]} |
In[9]:= | {KnotDet[Knot[10, 152]], KnotSignature[Knot[10, 152]]} |
Out[9]= | {11, -6} |
In[10]:= | J=Jones[Knot[10, 152]][q] |
Out[10]= | -13 2 2 3 2 2 -7 -6 -4 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 152]} |
In[12]:= | A2Invariant[Knot[10, 152]][q] |
Out[12]= | 2 -34 3 2 3 -24 2 3 2 -16 -14 |
In[13]:= | Kauffman[Knot[10, 152]][a, z] |
Out[13]= | 8 10 12 9 11 13 15 |
In[14]:= | {Vassiliev[2][Knot[10, 152]], Vassiliev[3][Knot[10, 152]]} |
Out[14]= | {0, -15} |
In[15]:= | Kh[Knot[10, 152]][q, t] |
Out[15]= | -9 -7 1 1 1 1 1 2 |