10 74
|
|
|
|
Visit 10 74's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 74's page at Knotilus! Visit 10 74's page at the original Knot Atlas! |
10 74 Quick Notes |
Knot presentations
| Planar diagram presentation | X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X11,18,12,19 X9,20,10,1 X19,10,20,11 X17,6,18,7 X7,16,8,17 X15,8,16,9 |
| Gauss code | -1, 4, -3, 1, -2, 8, -9, 10, -6, 7, -5, 3, -4, 2, -10, 9, -8, 5, -7, 6 |
| Dowker-Thistlethwaite code | 4 12 14 16 20 18 2 8 6 10 |
| Conway Notation | [3,3,21+] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 t^2+16 t-23+16 t^{-1} -4 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-4 z^4} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{3,t+1\}} |
| Determinant and Signature | { 63, -2 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 74"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 t^2+16 t-23+16 t^{-1} -4 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-4 z^4} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{3,t+1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 63, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
| V2 and V3: | (0, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 74. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | χ | |||||||||
| 3 | 1 | 1 | |||||||||||||||||||
| 1 | 2 | -2 | |||||||||||||||||||
| -1 | 4 | 1 | 3 | ||||||||||||||||||
| -3 | 5 | 3 | -2 | ||||||||||||||||||
| -5 | 6 | 3 | 3 | ||||||||||||||||||
| -7 | 4 | 5 | 1 | ||||||||||||||||||
| -9 | 5 | 6 | -1 | ||||||||||||||||||
| -11 | 3 | 4 | 1 | ||||||||||||||||||
| -13 | 1 | 5 | -4 | ||||||||||||||||||
| -15 | 1 | 3 | 2 | ||||||||||||||||||
| -17 | 1 | -1 | |||||||||||||||||||
| -19 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 74]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 74]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],X[11, 18, 12, 19], X[9, 20, 10, 1], X[19, 10, 20, 11],X[17, 6, 18, 7], X[7, 16, 8, 17], X[15, 8, 16, 9]] |
In[4]:= | GaussCode[Knot[10, 74]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, 8, -9, 10, -6, 7, -5, 3, -4, 2, -10, 9, -8, 5, -7, 6] |
In[5]:= | BR[Knot[10, 74]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, -2, -3, 2, 2, 4, -3, -2, 4, -3}] |
In[6]:= | alex = Alexander[Knot[10, 74]][t] |
Out[6]= | 4 16 2 |
In[7]:= | Conway[Knot[10, 74]][z] |
Out[7]= | 4 1 - 4 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 67], Knot[10, 74], Knot[11, NonAlternating, 68]} |
In[9]:= | {KnotDet[Knot[10, 74]], KnotSignature[Knot[10, 74]]} |
Out[9]= | {63, -2} |
In[10]:= | J=Jones[Knot[10, 74]][q] |
Out[10]= | -9 2 4 8 9 10 11 8 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 74]} |
In[12]:= | A2Invariant[Knot[10, 74]][q] |
Out[12]= | -28 2 3 2 2 2 2 2 -4 3 2 4 |
In[13]:= | Kauffman[Knot[10, 74]][a, z] |
Out[13]= | 2 6 8 5 7 9 2 2 2 4 2 |
In[14]:= | {Vassiliev[2][Knot[10, 74]], Vassiliev[3][Knot[10, 74]]} |
Out[14]= | {0, 2} |
In[15]:= | Kh[Knot[10, 74]][q, t] |
Out[15]= | 3 4 1 1 1 3 1 5 3 |


