L8a13
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8a13 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8^2_{4}} in the Rolfsen table of links. Contains two L4a1 configurations. |
|
Link Presentations
[edit Notes on L8a13's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X16,7,9,8 X12,3,13,4 X6,13,7,14 X14,5,15,6 X4,15,5,16 X2,9,3,10 X8,11,1,12 |
| Gauss code | {1, -7, 3, -6, 5, -4, 2, -8}, {7, -1, 8, -3, 4, -5, 6, -2} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(t(1)+t(2)) \left(t(2) t(1)^2+t(2)^2 t(1)-2 t(2) t(1)+t(1)+t(2)\right)}{t(1)^{3/2} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{q^{9/2}}-\frac{4}{q^{7/2}}+\frac{2}{q^{5/2}}-\frac{1}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{17/2}}-\frac{3}{q^{15/2}}+\frac{4}{q^{13/2}}-\frac{4}{q^{11/2}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z a^9+a^9 z^{-1} -z^3 a^7-z a^7-a^7 z^{-1} -2 z^3 a^5-3 z a^5-z^3 a^3-z a^3} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^5 a^{11}+4 z^3 a^{11}-4 z a^{11}-z^6 a^{10}+2 z^4 a^{10}-z^7 a^9+2 z^5 a^9-2 z^3 a^9+3 z a^9-a^9 z^{-1} -3 z^6 a^8+5 z^4 a^8-z^2 a^8+a^8-z^7 a^7-z^3 a^7+3 z a^7-a^7 z^{-1} -2 z^6 a^6+z^4 a^6-3 z^5 a^5+4 z^3 a^5-3 z a^5-2 z^4 a^4+z^2 a^4-z^3 a^3+z a^3} (db) |
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|







