L8a12
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8a12 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8^2_{2}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8a12's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X16,7,9,8 X12,3,13,4 X14,5,15,6 X4,13,5,14 X6,15,7,16 X2,9,3,10 X8,11,1,12 |
| Gauss code | {1, -7, 3, -5, 4, -6, 2, -8}, {7, -1, 8, -3, 5, -4, 6, -2} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-t(2)^2 t(1)^3-t(2)^3 t(1)^2+t(2)^2 t(1)^2-t(2) t(1)^2-t(2)^2 t(1)+t(2) t(1)-t(1)-t(2)}{t(1)^{3/2} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{q^{5/2}}+\frac{1}{q^{7/2}}-\frac{2}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{3}{q^{13/2}}+\frac{3}{q^{15/2}}-\frac{2}{q^{17/2}}+\frac{1}{q^{19/2}}-\frac{1}{q^{21/2}}} (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^9 z^3+3 a^9 z+a^9 z^{-1} -a^7 z^5-4 a^7 z^3-4 a^7 z-a^7 z^{-1} -a^5 z^5-4 a^5 z^3-3 a^5 z} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^3 a^{13}+2 z a^{13}-z^4 a^{12}+z^2 a^{12}-z^5 a^{11}+z^3 a^{11}-z a^{11}-z^6 a^{10}+2 z^4 a^{10}-3 z^2 a^{10}-z^7 a^9+4 z^5 a^9-8 z^3 a^9+5 z a^9-a^9 z^{-1} -2 z^6 a^8+6 z^4 a^8-5 z^2 a^8+a^8-z^7 a^7+4 z^5 a^7-6 z^3 a^7+5 z a^7-a^7 z^{-1} -z^6 a^6+3 z^4 a^6-z^2 a^6-z^5 a^5+4 z^3 a^5-3 z a^5} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



