L11n136

From Knot Atlas
Revision as of 02:51, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n135.gif

L11n135

L11n137.gif

L11n137

L11n136.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n136 at Knotilus!


Link Presentations

[edit Notes on L11n136's Link Presentations]

Planar diagram presentation X8192 X11,19,12,18 X3,10,4,11 X2,17,3,18 X12,5,13,6 X6718 X16,10,17,9 X20,14,21,13 X22,16,7,15 X19,4,20,5 X14,22,15,21
Gauss code {1, -4, -3, 10, 5, -6}, {6, -1, 7, 3, -2, -5, 8, -11, 9, -7, 4, 2, -10, -8, 11, -9}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n136 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
8         1-1
6          0
4       21 -1
2      1   1
0     23   1
-2    1     1
-4   12     1
-6  11      0
-8  1       1
-1011        0
-121         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n135.gif

L11n135

L11n137.gif

L11n137