L11n135

From Knot Atlas
Jump to navigationJump to search

L11n134.gif

L11n134

L11n136.gif

L11n136

L11n135.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n135 at Knotilus!


Link Presentations

[edit Notes on L11n135's Link Presentations]

Planar diagram presentation X8192 X11,19,12,18 X3,10,4,11 X17,3,18,2 X12,5,13,6 X6718 X16,10,17,9 X20,14,21,13 X22,16,7,15 X4,20,5,19 X14,22,15,21
Gauss code {1, 4, -3, -10, 5, -6}, {6, -1, 7, 3, -2, -5, 8, -11, 9, -7, -4, 2, 10, -8, 11, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n135 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-2-101234567χ
16         1-1
14          0
12       21 -1
10      1   1
8     22   0
6    21    1
4   12     1
2  22      0
0  2       2
-211        0
-41         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n134.gif

L11n134

L11n136.gif

L11n136