K11n128

From Knot Atlas
Revision as of 16:09, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

K11n127.gif

K11n127

K11n129.gif

K11n129

K11n128.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n128 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X5,19,6,18 X7,15,8,14 X9,16,10,17 X2,11,3,12 X13,7,14,6 X15,20,16,21 X17,1,18,22 X19,12,20,13 X21,9,22,8
Gauss code 1, -6, 2, -1, -3, 7, -4, 11, -5, -2, 6, 10, -7, 4, -8, 5, -9, 3, -10, 8, -11, 9
Dowker-Thistlethwaite code 4 10 -18 -14 -16 2 -6 -20 -22 -12 -8
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation K11n128 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n128/ThurstonBennequinNumber
Hyperbolic Volume 12.2619
A-Polynomial See Data:K11n128/A-polynomial

[edit Notes for K11n128's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11n128's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 43, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:K11n128/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_22,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11n128. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
11         11
9        2 -2
7       31 2
5      32  -1
3     43   1
1    44    0
-1   23     -1
-3  24      2
-5 12       -1
-7 2        2
-91         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n127.gif

K11n127

K11n129.gif

K11n129