|
Celtic or pseudo-Celtic linear decorative knot
|
|
Decorative variant with big loops at ends
|
(Also see Detecting a Link Using the Multivariable Alexander Polynomial.)
Link Presentations
[edit Notes on L11a289's Link Presentations]
Planar diagram presentation
|
X10,1,11,2 X12,4,13,3 X22,12,9,11 X2,9,3,10 X20,14,21,13 X14,7,15,8 X18,16,19,15 X16,6,17,5 X6,18,7,17 X4,19,5,20 X8,22,1,21
|
Gauss code
|
{1, -4, 2, -10, 8, -9, 6, -11}, {4, -1, 3, -2, 5, -6, 7, -8, 9, -7, 10, -5, 11, -3}
|
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...)
|
(db)
|
Jones polynomial
|
(db)
|
Signature
|
3 (db)
|
HOMFLY-PT polynomial
|
(db)
|
Kauffman polynomial
|
(db)
|
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).
|
|
|
-4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | χ |
18 | | | | | | | | | | | | 1 | -1 |
16 | | | | | | | | | | | 3 | | 3 |
14 | | | | | | | | | | 5 | 1 | | -4 |
12 | | | | | | | | | 7 | 3 | | | 4 |
10 | | | | | | | | 9 | 5 | | | | -4 |
8 | | | | | | | 9 | 7 | | | | | 2 |
6 | | | | | | 8 | 9 | | | | | | 1 |
4 | | | | | 7 | 9 | | | | | | | -2 |
2 | | | | 5 | 10 | | | | | | | | 5 |
0 | | | 2 | 5 | | | | | | | | | -3 |
-2 | | 1 | 5 | | | | | | | | | | 4 |
-4 | | 2 | | | | | | | | | | | -2 |
-6 | 1 | | | | | | | | | | | | 1 |
|