Previous: "T(7,3)"; Next: "T(15,2)"
Further "T(5,4)" views
Planar Diagram: PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26], X[11, 19, 12, 18],
X[4, 20, 5, 19], X[27, 21, 28, 20], X[5, 13, 6, 12], X[28, 14, 29, 13],
X[21, 15, 22, 14], X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8],
X[23, 1, 24, 30], X[16, 2, 17, 1], X[9, 3, 10, 2]]
<a href="../Manual/TubePlot.html"><img src="m.n_240.jpg"
border=0 alt="T(m,n)"> TubePlot</a>
|
The m*(-1 + n)-Crossing Torus Knot T(m,n)
Include["$knotaka.html"]
Visit <a class=external
href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s
page</a> at <a class=external
href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno
tilus</a>!
<a href="../Manual/Acknowledgement.html">Acknowledgement</a>
|
<a href="../Manual/GaussCode.html">Gauss Code</a>: |
{PD[TorusKnot[m, n]]} |
<a href="../Manual/BR.html">Braid Representative</a>: |
|
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> "HTML"]
|
<a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>:
|
PolyPrint[1, t] |
<a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: |
PolyPrint[1, z] |
Other knots with the same <a
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>:
|
{StringJoin[ToString[Knot[0, 1], FormatType -> HTMLForm], ", ",
ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm], ", ",
ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm], ", "]...} |
<a href="../Manual/DetAndSignature.html">Determinant and Signature</a>:
|
{1, 0} |
<a href="../Manual/Jones.html">Jones Polynomial</a>:
|
PolyPrint[-((Sqrt[q]*TorusKnot[m, n])/(1 + q)), q] |
Other knots (up to mirrors) with the same <a
href="../Manual/Jones.html">Jones Polynomial</a>:
|
{""...} |
Include["ColouredJones.mhtml"]
<a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>:
|
PolyPrint[TorusKnot[m, n], q] |
<a href="../Manual/Kauffman.html">Kauffman Polynomial</a>:
|
PolyPrint[KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][1/4]/
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) +
KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][
Flatten[KnotTheory`Kauffman`Decorate /@ #1] & ]/
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) +
KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][
{KnotTheory`Kauffman`State[PD[TorusKnot[m, n]]]}]/
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]), {9, z}] |
<a href="../Manual/Vassiliev.html">V2 and
V3, the type 2 and 3 Vassiliev invariants</a>: |
{0, 0} |
<a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>.
The coefficients of the monomials trqj
are shown, along with their alternating sums χ (fixed j,
alternation over r).
The squares with yellow highlighting
are those on the "critical diagonals", where j-2r=s+1 or
j-2r=s+1, where s=0 is the signature of
T(m,n). Nonzero entries off the critical diagonals (if
any exist) are highlighted in red.
TabularKh[$Failed[q, t], {1, -1}]
ComputerTalkHeader
GraphicsBox["`1`.`2`_240.jpg", "TubePlot[TorusKnot[`1`, `2`]]", m, n]
InOut["Crossings[``]", TorusKnot[m, n]]
InOut["PD[``]", TorusKnot[m, n]]
InOut["GaussCode[``]", TorusKnot[m, n]]
InOut["BR[``]", TorusKnot[m, n]]
InOut["alex = Alexander[``][t]", TorusKnot[m, n]]
InOut["Conway[``][z]", TorusKnot[m, n]]
InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]
InOut["{KnotDet[`1`], KnotSignature[`1`]}", TorusKnot[m, n]]
InOut["J=Jones[``][q]", TorusKnot[m, n]]
InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"]
Include["ColouredJonesM.mhtml"]
InOut["A2Invariant[``][q]", TorusKnot[m, n]]
InOut["Kauffman[``][a, z]", TorusKnot[m, n]]
InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", TorusKnot[m, n]]
InOut["Kh[``][q, t]", TorusKnot[m, n]]
<a href="/~drorbn/">Dror Bar-Natan</a>:
<a href="../index.html">The Knot Atlas</a>:
<a href="index.html">Torus Knots</a>:
<a href="#top">The Torus Knot T(m,n)</a>
|
<a href="prevm.prevn.html"><img border=0
width=120 height=120 src="prevm.prevn_120.jpg"
alt="T(prevm,prevn)"> T(prevm,prevn)</a>
|
<a href="nextm.nextn.html"><img border=0
width=120 height=120 src="nextm.nextn_120.jpg"
alt="T(nextm,nextn)"> T(nextm,nextn)</a>
|
|
</body>
</html>
Previous: "T(7,3)"; Next: "T(15,2)"
Visit T(5,4)'s page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit [{{{KnotilusURL}}} T(5,4)'s page] at Knotilus!
Visit T(5,4)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation
|
X17,25,18,24 X10,26,11,25 X3,27,4,26 X11,19,12,18 X4,20,5,19 X27,21,28,20 X5,13,6,12 X28,14,29,13 X21,15,22,14 X29,7,30,6 X22,8,23,7 X15,9,16,8 X23,1,24,30 X16,2,17,1 X9,3,10,2
|
Gauss code
|
14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13
|
Dowker-Thistlethwaite code
|
16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6
|
Conway Notation
|
Data:T(5,4)/Conway Notation
|
Symmetry type
|
Reversible
|
Unknotting number
|
2
|
3-genus
|
2
|
Bridge index (super bridge index)
|
2 (4)
|
Nakanishi index
|
1
|
Polynomial invariants
Alexander polynomial |
|
Conway polynomial |
|
2nd Alexander ideal (db, data sources) |
|
Determinant and Signature |
{ 5, 8 } |
Jones polynomial |
|
HOMFLY-PT polynomial (db, data sources) |
|
Kauffman polynomial (db, data sources) |
|
The A2 invariant |
Data:T(5,4)/QuantumInvariant/A2/1,0 |
The G2 invariant |
Data:T(5,4)/QuantumInvariant/G2/1,0 |
Further Quantum Invariants
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[3]:=
|
K = Knot["T(5,4)"];
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
Data:T(5,4)/V 2,1
|
Data:T(5,4)/V 3,1
|
Data:T(5,4)/V 4,1
|
Data:T(5,4)/V 4,2
|
Data:T(5,4)/V 4,3
|
Data:T(5,4)/V 5,1
|
Data:T(5,4)/V 5,2
|
Data:T(5,4)/V 5,3
|
Data:T(5,4)/V 5,4
|
Data:T(5,4)/V 6,1
|
Data:T(5,4)/V 6,2
|
Data:T(5,4)/V 6,3
|
Data:T(5,4)/V 6,4
|
Data:T(5,4)/V 6,5
|
Data:T(5,4)/V 6,6
|
Data:T(5,4)/V 6,7
|
Data:T(5,4)/V 6,8
|
Data:T(5,4)/V 6,9
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Template:Khovanov Invariants
Template:Quantum Invariants