10 147
From Knot Atlas
Jump to navigationJump to search
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+7 t-9+7 t^{-1} -2 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^4-z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 27, 2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5-3 q^4+4 q^3-4 q^2+5 q-4+3 q^{-1} -2 q^{-2} + q^{-3} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-2} -z^4+a^2 z^2-z^2 a^{-2} +z^2 a^{-4} -2 z^2+a^2+ a^{-2} -1} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8+2 a z^7+4 z^7 a^{-1} +2 z^7 a^{-3} +a^2 z^6-z^6 a^{-2} +z^6 a^{-4} -z^6-8 a z^5-14 z^5 a^{-1} -6 z^5 a^{-3} -4 a^2 z^4-2 z^4 a^{-2} -6 z^4+8 a z^3+13 z^3 a^{-1} +8 z^3 a^{-3} +3 z^3 a^{-5} +4 a^2 z^2+z^2 a^{-2} +z^2 a^{-6} +6 z^2-2 a z-4 z a^{-1} -3 z a^{-3} -z a^{-5} -a^2- a^{-2} -1} |
| The A2 invariant | |
| The G2 invariant |
Further Quantum Invariants
Further quantum knot invariants for 10_147.
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-q^{24}+2 q^{22}-2 q^{20}+4 q^{18}-3 q^{16}+3 q^{14}-3 q^{12}+4 q^{10}-2 q^8+q^6+3-3 q^{-2} +4 q^{-4} -5 q^{-6} +5 q^{-8} -6 q^{-10} +6 q^{-12} -6 q^{-14} +5 q^{-16} -4 q^{-18} +3 q^{-20} - q^{-22} + q^{-24} + q^{-26} - q^{-28} +3 q^{-30} -2 q^{-32} +4 q^{-34} -3 q^{-36} +2 q^{-38} -3 q^{-40} +3 q^{-42} -2 q^{-44} - q^{-48} + q^{-50} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}-q^{44}+3 q^{42}-4 q^{40}+3 q^{38}-q^{36}-3 q^{34}+10 q^{32}-11 q^{30}+12 q^{28}-6 q^{26}-5 q^{24}+12 q^{22}-14 q^{20}+11 q^{18}-5 q^{16}-4 q^{14}+12 q^{12}-9 q^{10}+3 q^8+5 q^6-13 q^4+14 q^2-7-5 q^{-2} +10 q^{-4} -14 q^{-6} +18 q^{-8} -11 q^{-10} +4 q^{-12} +4 q^{-14} -13 q^{-16} +15 q^{-18} -13 q^{-20} +7 q^{-22} -7 q^{-26} +11 q^{-28} -6 q^{-30} +3 q^{-32} +6 q^{-34} -14 q^{-36} +11 q^{-38} - q^{-40} -7 q^{-42} +13 q^{-44} -15 q^{-46} +11 q^{-48} + q^{-50} -6 q^{-52} +7 q^{-54} -11 q^{-56} +7 q^{-58} -3 q^{-62} +2 q^{-64} -2 q^{-66} + q^{-68} + q^{-70} +2 q^{-72} - q^{-74} - q^{-78} - q^{-84} + q^{-86} } |
.
Computer Talk
The above data is available with the Mathematica package
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 147"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+7 t-9+7 t^{-1} -2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5-3 q^4+4 q^3-4 q^2+5 q-4+3 q^{-1} -2 q^{-2} + q^{-3} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-2} -z^4+a^2 z^2-z^2 a^{-2} +z^2 a^{-4} -2 z^2+a^2+ a^{-2} -1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8+2 a z^7+4 z^7 a^{-1} +2 z^7 a^{-3} +a^2 z^6-z^6 a^{-2} +z^6 a^{-4} -z^6-8 a z^5-14 z^5 a^{-1} -6 z^5 a^{-3} -4 a^2 z^4-2 z^4 a^{-2} -6 z^4+8 a z^3+13 z^3 a^{-1} +8 z^3 a^{-3} +3 z^3 a^{-5} +4 a^2 z^2+z^2 a^{-2} +z^2 a^{-6} +6 z^2-2 a z-4 z a^{-1} -3 z a^{-3} -z a^{-5} -a^2- a^{-2} -1} |