10 147
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 147's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X5,14,6,15 X15,20,16,1 X12,7,13,8 X8,18,9,17 X19,7,20,6 X16,12,17,11 X18,13,19,14 X2,10,3,9 |
| Gauss code | 1, -10, 2, -1, -3, 7, 5, -6, 10, -2, 8, -5, 9, 3, -4, -8, 6, -9, -7, 4 |
| Dowker-Thistlethwaite code | 4 10 -14 12 2 16 18 -20 8 -6 |
| Conway Notation | [211,3,21-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{3, 7}, {2, 5}, {1, 3}, {10, 8}, {7, 9}, {8, 4}, {11, 6}, {5, 10}, {9, 2}, {4, 11}, {6, 1}] |
[edit Notes on presentations of 10 147]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 147"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,4,11,3 X5,14,6,15 X15,20,16,1 X12,7,13,8 X8,18,9,17 X19,7,20,6 X16,12,17,11 X18,13,19,14 X2,10,3,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, -3, 7, 5, -6, 10, -2, 8, -5, 9, 3, -4, -8, 6, -9, -7, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 -14 12 2 16 18 -20 8 -6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[211,3,21-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,1,-2,1,-2,-3,2,-1,2,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 7}, {2, 5}, {1, 3}, {10, 8}, {7, 9}, {8, 4}, {11, 6}, {5, 10}, {9, 2}, {4, 11}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+7 t-9+7 t^{-1} -2 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^4-z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 27, 2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5-3 q^4+4 q^3-4 q^2+5 q-4+3 q^{-1} -2 q^{-2} + q^{-3} } |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-q^{18}+3 q^{16}-3 q^{14}+4 q^{12}-4 q^{10}+4 q^8-3 q^6+q^4-3+4 q^{-2} -6 q^{-4} +8 q^{-6} -7 q^{-8} +8 q^{-10} -5 q^{-12} +5 q^{-14} -2 q^{-16} +2 q^{-20} -3 q^{-22} +3 q^{-24} -4 q^{-26} +4 q^{-28} -4 q^{-30} +2 q^{-32} - q^{-34} + q^{-36} } |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-q^{24}+2 q^{22}-2 q^{20}+4 q^{18}-3 q^{16}+3 q^{14}-3 q^{12}+4 q^{10}-2 q^8+q^6+3-3 q^{-2} +4 q^{-4} -5 q^{-6} +5 q^{-8} -6 q^{-10} +6 q^{-12} -6 q^{-14} +5 q^{-16} -4 q^{-18} +3 q^{-20} - q^{-22} + q^{-24} + q^{-26} - q^{-28} +3 q^{-30} -2 q^{-32} +4 q^{-34} -3 q^{-36} +2 q^{-38} -3 q^{-40} +3 q^{-42} -2 q^{-44} - q^{-48} + q^{-50} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}-q^{44}+3 q^{42}-4 q^{40}+3 q^{38}-q^{36}-3 q^{34}+10 q^{32}-11 q^{30}+12 q^{28}-6 q^{26}-5 q^{24}+12 q^{22}-14 q^{20}+11 q^{18}-5 q^{16}-4 q^{14}+12 q^{12}-9 q^{10}+3 q^8+5 q^6-13 q^4+14 q^2-7-5 q^{-2} +10 q^{-4} -14 q^{-6} +18 q^{-8} -11 q^{-10} +4 q^{-12} +4 q^{-14} -13 q^{-16} +15 q^{-18} -13 q^{-20} +7 q^{-22} -7 q^{-26} +11 q^{-28} -6 q^{-30} +3 q^{-32} +6 q^{-34} -14 q^{-36} +11 q^{-38} - q^{-40} -7 q^{-42} +13 q^{-44} -15 q^{-46} +11 q^{-48} + q^{-50} -6 q^{-52} +7 q^{-54} -11 q^{-56} +7 q^{-58} -3 q^{-62} +2 q^{-64} -2 q^{-66} + q^{-68} + q^{-70} +2 q^{-72} - q^{-74} - q^{-78} - q^{-84} + q^{-86} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 147"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+7 t-9+7 t^{-1} -2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^4-z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5-3 q^4+4 q^3-4 q^2+5 q-4+3 q^{-1} -2 q^{-2} + q^{-3} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_11, K11n122,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 147"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+7 t-9+7 t^{-1} -2 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5-3 q^4+4 q^3-4 q^2+5 q-4+3 q^{-1} -2 q^{-2} + q^{-3} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{8_11, K11n122,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 10 147. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{13}+3 q^{12}-7 q^{10}+8 q^9+q^8-14 q^7+12 q^6+6 q^5-17 q^4+9 q^3+11 q^2-17 q+3+13 q^{-1} -13 q^{-2} -2 q^{-3} +12 q^{-4} -6 q^{-5} -4 q^{-6} +6 q^{-7} - q^{-8} -2 q^{-9} + q^{-10} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{28}+2 q^{27}+q^{26}-q^{25}-6 q^{24}+13 q^{22}+2 q^{21}-18 q^{20}-12 q^{19}+27 q^{18}+22 q^{17}-30 q^{16}-33 q^{15}+29 q^{14}+42 q^{13}-28 q^{12}-44 q^{11}+19 q^{10}+48 q^9-16 q^8-41 q^7+6 q^6+40 q^5-2 q^4-30 q^3-9 q^2+26 q+14-17 q^{-1} -20 q^{-2} +8 q^{-3} +23 q^{-4} +2 q^{-5} -22 q^{-6} -10 q^{-7} +17 q^{-8} +16 q^{-9} -11 q^{-10} -16 q^{-11} +3 q^{-12} +14 q^{-13} + q^{-14} -9 q^{-15} -3 q^{-16} +5 q^{-17} +2 q^{-18} - q^{-19} -2 q^{-20} + q^{-21} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{46}+2 q^{45}+2 q^{44}-4 q^{43}-3 q^{42}-4 q^{41}+12 q^{40}+16 q^{39}-11 q^{38}-23 q^{37}-30 q^{36}+30 q^{35}+70 q^{34}+5 q^{33}-61 q^{32}-105 q^{31}+21 q^{30}+151 q^{29}+72 q^{28}-74 q^{27}-201 q^{26}-36 q^{25}+202 q^{24}+153 q^{23}-43 q^{22}-255 q^{21}-106 q^{20}+200 q^{19}+193 q^{18}+2 q^{17}-251 q^{16}-141 q^{15}+172 q^{14}+181 q^{13}+37 q^{12}-213 q^{11}-149 q^{10}+135 q^9+150 q^8+64 q^7-163 q^6-150 q^5+87 q^4+109 q^3+93 q^2-94 q-140+27 q^{-1} +52 q^{-2} +107 q^{-3} -15 q^{-4} -99 q^{-5} -16 q^{-6} -18 q^{-7} +79 q^{-8} +38 q^{-9} -33 q^{-10} -10 q^{-11} -62 q^{-12} +20 q^{-13} +35 q^{-14} +14 q^{-15} +26 q^{-16} -52 q^{-17} -17 q^{-18} + q^{-19} +12 q^{-20} +41 q^{-21} -15 q^{-22} -13 q^{-23} -15 q^{-24} -5 q^{-25} +24 q^{-26} + q^{-27} -7 q^{-29} -7 q^{-30} +6 q^{-31} + q^{-32} +2 q^{-33} - q^{-34} -2 q^{-35} + q^{-36} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}-2 q^{65}-3 q^{64}+3 q^{63}+7 q^{62}+5 q^{61}-2 q^{60}-20 q^{59}-27 q^{58}+7 q^{57}+47 q^{56}+60 q^{55}+10 q^{54}-81 q^{53}-133 q^{52}-58 q^{51}+119 q^{50}+240 q^{49}+144 q^{48}-130 q^{47}-359 q^{46}-295 q^{45}+102 q^{44}+492 q^{43}+464 q^{42}-27 q^{41}-574 q^{40}-655 q^{39}-99 q^{38}+620 q^{37}+819 q^{36}+238 q^{35}-609 q^{34}-927 q^{33}-377 q^{32}+552 q^{31}+992 q^{30}+488 q^{29}-490 q^{28}-995 q^{27}-553 q^{26}+407 q^{25}+972 q^{24}+594 q^{23}-357 q^{22}-920 q^{21}-597 q^{20}+290 q^{19}+874 q^{18}+598 q^{17}-249 q^{16}-808 q^{15}-589 q^{14}+175 q^{13}+751 q^{12}+599 q^{11}-114 q^{10}-671 q^9-596 q^8+12 q^7+583 q^6+603 q^5+79 q^4-470 q^3-574 q^2-190 q+336+536 q^{-1} +269 q^{-2} -189 q^{-3} -448 q^{-4} -326 q^{-5} +40 q^{-6} +337 q^{-7} +336 q^{-8} +78 q^{-9} -200 q^{-10} -293 q^{-11} -159 q^{-12} +68 q^{-13} +210 q^{-14} +185 q^{-15} +35 q^{-16} -110 q^{-17} -153 q^{-18} -92 q^{-19} +11 q^{-20} +93 q^{-21} +101 q^{-22} +47 q^{-23} -22 q^{-24} -66 q^{-25} -71 q^{-26} -30 q^{-27} +22 q^{-28} +56 q^{-29} +52 q^{-30} +15 q^{-31} -25 q^{-32} -45 q^{-33} -36 q^{-34} -3 q^{-35} +30 q^{-36} +33 q^{-37} +14 q^{-38} -6 q^{-39} -23 q^{-40} -20 q^{-41} - q^{-42} +13 q^{-43} +10 q^{-44} +5 q^{-45} -9 q^{-47} -5 q^{-48} +2 q^{-49} +2 q^{-50} + q^{-51} +2 q^{-52} - q^{-53} -2 q^{-54} + q^{-55} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




