K11n122

From Knot Atlas
Jump to navigationJump to search

K11n121.gif

K11n121

K11n123.gif

K11n123

K11n122.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n122 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X5,16,6,17 X7,12,8,13 X9,19,10,18 X2,11,3,12 X13,20,14,21 X15,6,16,7 X17,22,18,1 X19,9,20,8 X21,14,22,15
Gauss code 1, -6, 2, -1, -3, 8, -4, 10, -5, -2, 6, 4, -7, 11, -8, 3, -9, 5, -10, 7, -11, 9
Dowker-Thistlethwaite code 4 10 -16 -12 -18 2 -20 -6 -22 -8 -14
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n122 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number [math]\displaystyle{ \{1,2\} }[/math]
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n122/ThurstonBennequinNumber
Hyperbolic Volume 9.7305
A-Polynomial See Data:K11n122/A-polynomial

[edit Notes for K11n122's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 1 }[/math]
Rasmussen s-Invariant 2

[edit Notes for K11n122's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^2+7 t-9+7 t^{-1} -2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^4-z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 27, -2 }
Jones polynomial [math]\displaystyle{ 2 q^{-1} -2 q^{-2} +4 q^{-3} -5 q^{-4} +4 q^{-5} -4 q^{-6} +3 q^{-7} -2 q^{-8} + q^{-9} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^2 a^8+a^8-z^4 a^6-2 z^2 a^6-a^6-z^4 a^4-2 z^2 a^4-2 a^4+2 z^2 a^2+3 a^2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^6 a^{10}-4 z^4 a^{10}+3 z^2 a^{10}+2 z^7 a^9-8 z^5 a^9+7 z^3 a^9-2 z a^9+2 z^8 a^8-8 z^6 a^8+8 z^4 a^8-4 z^2 a^8+a^8+z^9 a^7-3 z^7 a^7+z^5 a^7+3 z^8 a^6-14 z^6 a^6+21 z^4 a^6-11 z^2 a^6+a^6+z^9 a^5-5 z^7 a^5+10 z^5 a^5-9 z^3 a^5+5 z a^5+z^8 a^4-5 z^6 a^4+9 z^4 a^4-2 z^2 a^4-2 a^4+z^5 a^3-2 z^3 a^3+3 z a^3+2 z^2 a^2-3 a^2 }[/math]
The A2 invariant Data:K11n122/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n122/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {8_11, 10_147,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-1, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -4 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ -\frac{206}{3} }[/math] [math]\displaystyle{ \frac{62}{3} }[/math] [math]\displaystyle{ -128 }[/math] [math]\displaystyle{ -\frac{448}{3} }[/math] [math]\displaystyle{ -\frac{256}{3} }[/math] [math]\displaystyle{ -128 }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ 512 }[/math] [math]\displaystyle{ \frac{824}{3} }[/math] [math]\displaystyle{ -\frac{248}{3} }[/math] [math]\displaystyle{ \frac{50369}{30} }[/math] [math]\displaystyle{ -\frac{2818}{15} }[/math] [math]\displaystyle{ \frac{49138}{45} }[/math] [math]\displaystyle{ \frac{3295}{18} }[/math] [math]\displaystyle{ \frac{2849}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11n122. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-1        22
-3       110
-5      31 2
-7     21  -1
-9    23   -1
-11   22    0
-13  12     -1
-15 12      1
-17 1       -1
-191        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n121.gif

K11n121

K11n123.gif

K11n123