10 146
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 146's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X5,18,6,19 X8394 X2,9,3,10 X11,17,12,16 X7,12,8,13 X15,6,16,7 X17,11,18,10 X13,1,14,20 X19,15,20,14 |
| Gauss code | 1, -4, 3, -1, -2, 7, -6, -3, 4, 8, -5, 6, -9, 10, -7, 5, -8, 2, -10, 9 |
| Dowker-Thistlethwaite code | 4 8 -18 -12 2 -16 -20 -6 -10 -14 |
| Conway Notation | [22,21,21-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{12, 8}, {3, 9}, {4, 2}, {1, 3}, {5, 7}, {8, 6}, {7, 10}, {9, 4}, {11, 5}, {10, 12}, {2, 11}, {6, 1}] |
[edit Notes on presentations of 10 146]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 146"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X5,18,6,19 X8394 X2,9,3,10 X11,17,12,16 X7,12,8,13 X15,6,16,7 X17,11,18,10 X13,1,14,20 X19,15,20,14 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, -2, 7, -6, -3, 4, 8, -5, 6, -9, 10, -7, 5, -8, 2, -10, 9 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -18 -12 2 -16 -20 -6 -10 -14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[22,21,21-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{-1,-1,2,-1,2,1,-3,2,-1,2,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 8}, {3, 9}, {4, 2}, {1, 3}, {5, 7}, {8, 6}, {7, 10}, {9, 4}, {11, 5}, {10, 12}, {2, 11}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-8 t+13-8 t^{-1} +2 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 33, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^3+3 q^2-4 q+6-6 q^{-1} +5 q^{-2} -4 q^{-3} +3 q^{-4} - q^{-5} } |
| HOMFLY-PT polynomial (db, data sources) | |
| Kauffman polynomial (db, data sources) | |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{34}+2 q^{32}-4 q^{30}+6 q^{28}-6 q^{26}+6 q^{24}-6 q^{22}+5 q^{20}-2 q^{18}-q^{16}+5 q^{14}-7 q^{12}+10 q^{10}-12 q^8+12 q^6-11 q^4+9 q^2-6+3 q^{-2} + q^{-4} -3 q^{-6} +6 q^{-8} -6 q^{-10} +7 q^{-12} -5 q^{-14} +5 q^{-16} -3 q^{-18} + q^{-20} - q^{-22} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-2 q^{52}-2 q^{50}+2 q^{48}+4 q^{46}-2 q^{44}-5 q^{42}+7 q^{38}+4 q^{36}-6 q^{34}-6 q^{32}+3 q^{30}+6 q^{28}-6 q^{24}-2 q^{22}+4 q^{20}+3 q^{18}-3 q^{16}-3 q^{14}+3 q^{12}+4 q^{10}-q^8-5 q^6+6 q^2+2-5 q^{-2} -3 q^{-4} +6 q^{-6} +5 q^{-8} -3 q^{-10} -6 q^{-12} +2 q^{-14} +7 q^{-16} +2 q^{-18} -5 q^{-20} -4 q^{-22} + q^{-24} +4 q^{-26} -2 q^{-30} - q^{-32} + q^{-36} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}-2 q^{44}+2 q^{42}-4 q^{40}+5 q^{38}-5 q^{36}+5 q^{34}-5 q^{32}+6 q^{30}-3 q^{28}+2 q^{26}-q^{22}+2 q^{20}-6 q^{18}+6 q^{16}-8 q^{14}+8 q^{12}-10 q^{10}+9 q^8-7 q^6+10 q^4-5 q^2+6- q^{-2} +3 q^{-4} +3 q^{-6} -3 q^{-8} +3 q^{-10} -5 q^{-12} +6 q^{-14} -5 q^{-16} +3 q^{-18} -5 q^{-20} +4 q^{-22} -2 q^{-24} + q^{-26} - q^{-28} + q^{-30} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-2 q^{78}+4 q^{76}-7 q^{74}+5 q^{72}-2 q^{70}-6 q^{68}+16 q^{66}-19 q^{64}+20 q^{62}-13 q^{60}-4 q^{58}+19 q^{56}-29 q^{54}+29 q^{52}-14 q^{50}-4 q^{48}+20 q^{46}-22 q^{44}+16 q^{42}-q^{40}-18 q^{38}+23 q^{36}-21 q^{34}+7 q^{32}+13 q^{30}-31 q^{28}+37 q^{26}-24 q^{24}+10 q^{22}+6 q^{20}-27 q^{18}+34 q^{16}-31 q^{14}+22 q^{12}-3 q^{10}-15 q^8+28 q^6-23 q^4+12 q^2+4-18 q^{-2} +20 q^{-4} -13 q^{-6} - q^{-8} +22 q^{-10} -29 q^{-12} +27 q^{-14} -11 q^{-16} -8 q^{-18} +22 q^{-20} -27 q^{-22} +19 q^{-24} -8 q^{-26} + q^{-28} +8 q^{-30} -12 q^{-32} +8 q^{-34} -3 q^{-36} +2 q^{-38} -2 q^{-42} - q^{-44} + q^{-48} - q^{-50} + q^{-52} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 146"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-8 t+13-8 t^{-1} +2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 33, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^3+3 q^2-4 q+6-6 q^{-1} +5 q^{-2} -4 q^{-3} +3 q^{-4} - q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n18, K11n62,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 146"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^2-8 t+13-8 t^{-1} +2 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^3+3 q^2-4 q+6-6 q^{-1} +5 q^{-2} -4 q^{-3} +3 q^{-4} - q^{-5} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n18, K11n62,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 146. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^8+3 q^7+3 q^6-11 q^5+8 q^4+12 q^3-25 q^2+8 q+24-33 q^{-1} +4 q^{-2} +30 q^{-3} -29 q^{-4} -2 q^{-5} +28 q^{-6} -19 q^{-7} -9 q^{-8} +20 q^{-9} -7 q^{-10} -9 q^{-11} +9 q^{-12} -3 q^{-14} + q^{-15} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{19}-q^{18}-q^{17}-3 q^{16}+4 q^{15}+8 q^{14}-3 q^{13}-17 q^{12}-5 q^{11}+33 q^{10}+15 q^9-42 q^8-38 q^7+53 q^6+59 q^5-52 q^4-86 q^3+53 q^2+99 q-39-116 q^{-1} +33 q^{-2} +118 q^{-3} -19 q^{-4} -117 q^{-5} +7 q^{-6} +110 q^{-7} +7 q^{-8} -99 q^{-9} -22 q^{-10} +83 q^{-11} +36 q^{-12} -64 q^{-13} -44 q^{-14} +40 q^{-15} +50 q^{-16} -20 q^{-17} -45 q^{-18} +2 q^{-19} +35 q^{-20} +8 q^{-21} -22 q^{-22} -13 q^{-23} +13 q^{-24} +9 q^{-25} -4 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{32}+q^{31}+3 q^{30}-2 q^{28}-10 q^{27}-5 q^{26}+16 q^{25}+18 q^{24}+13 q^{23}-36 q^{22}-57 q^{21}+11 q^{20}+64 q^{19}+99 q^{18}-30 q^{17}-169 q^{16}-81 q^{15}+76 q^{14}+262 q^{13}+85 q^{12}-265 q^{11}-257 q^{10}-20 q^9+415 q^8+286 q^7-271 q^6-413 q^5-187 q^4+475 q^3+459 q^2-204 q-472-335 q^{-1} +450 q^{-2} +543 q^{-3} -126 q^{-4} -450 q^{-5} -415 q^{-6} +381 q^{-7} +544 q^{-8} -49 q^{-9} -372 q^{-10} -448 q^{-11} +267 q^{-12} +489 q^{-13} +47 q^{-14} -242 q^{-15} -444 q^{-16} +109 q^{-17} +367 q^{-18} +135 q^{-19} -64 q^{-20} -371 q^{-21} -41 q^{-22} +183 q^{-23} +149 q^{-24} +96 q^{-25} -217 q^{-26} -101 q^{-27} +12 q^{-28} +73 q^{-29} +149 q^{-30} -63 q^{-31} -58 q^{-32} -55 q^{-33} -15 q^{-34} +95 q^{-35} +8 q^{-36} + q^{-37} -36 q^{-38} -36 q^{-39} +31 q^{-40} +8 q^{-41} +14 q^{-42} -6 q^{-43} -16 q^{-44} +4 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^{46}+5 q^{44}+5 q^{43}-5 q^{41}-22 q^{40}-17 q^{39}+15 q^{38}+45 q^{37}+49 q^{36}+12 q^{35}-76 q^{34}-134 q^{33}-71 q^{32}+90 q^{31}+239 q^{30}+211 q^{29}-37 q^{28}-358 q^{27}-443 q^{26}-104 q^{25}+444 q^{24}+713 q^{23}+383 q^{22}-417 q^{21}-1034 q^{20}-774 q^{19}+299 q^{18}+1271 q^{17}+1238 q^{16}-9 q^{15}-1457 q^{14}-1706 q^{13}-348 q^{12}+1497 q^{11}+2121 q^{10}+774 q^9-1458 q^8-2435 q^7-1150 q^6+1296 q^5+2649 q^4+1503 q^3-1150 q^2-2744 q-1730+942 q^{-1} +2762 q^{-2} +1932 q^{-3} -798 q^{-4} -2730 q^{-5} -2016 q^{-6} +627 q^{-7} +2647 q^{-8} +2093 q^{-9} -474 q^{-10} -2542 q^{-11} -2118 q^{-12} +303 q^{-13} +2370 q^{-14} +2138 q^{-15} -92 q^{-16} -2159 q^{-17} -2122 q^{-18} -146 q^{-19} +1864 q^{-20} +2067 q^{-21} +410 q^{-22} -1501 q^{-23} -1946 q^{-24} -663 q^{-25} +1081 q^{-26} +1737 q^{-27} +859 q^{-28} -633 q^{-29} -1428 q^{-30} -974 q^{-31} +215 q^{-32} +1063 q^{-33} +946 q^{-34} +127 q^{-35} -658 q^{-36} -816 q^{-37} -339 q^{-38} +298 q^{-39} +586 q^{-40} +418 q^{-41} -20 q^{-42} -349 q^{-43} -360 q^{-44} -142 q^{-45} +125 q^{-46} +255 q^{-47} +190 q^{-48} +11 q^{-49} -125 q^{-50} -150 q^{-51} -88 q^{-52} +25 q^{-53} +101 q^{-54} +89 q^{-55} +18 q^{-56} -35 q^{-57} -60 q^{-58} -47 q^{-59} +9 q^{-60} +36 q^{-61} +29 q^{-62} +6 q^{-63} -8 q^{-64} -18 q^{-65} -14 q^{-66} +6 q^{-67} +9 q^{-68} +3 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} } |
| 6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}-q^{67}-q^{66}-2 q^{63}-3 q^{62}+10 q^{61}+8 q^{60}+5 q^{59}+2 q^{58}-11 q^{57}-36 q^{56}-51 q^{55}+2 q^{54}+52 q^{53}+90 q^{52}+114 q^{51}+60 q^{50}-114 q^{49}-288 q^{48}-262 q^{47}-84 q^{46}+205 q^{45}+546 q^{44}+645 q^{43}+206 q^{42}-547 q^{41}-1049 q^{40}-1041 q^{39}-388 q^{38}+915 q^{37}+1991 q^{36}+1786 q^{35}+248 q^{34}-1692 q^{33}-2968 q^{32}-2693 q^{31}-157 q^{30}+3089 q^{29}+4578 q^{28}+3112 q^{27}-593 q^{26}-4539 q^{25}-6351 q^{24}-3522 q^{23}+2249 q^{22}+6962 q^{21}+7300 q^{20}+2819 q^{19}-4116 q^{18}-9482 q^{17}-8029 q^{16}-769 q^{15}+7388 q^{14}+10770 q^{13}+7097 q^{12}-1757 q^{11}-10661 q^{10}-11619 q^9-4382 q^8+6077 q^7+12288 q^6+10342 q^5+1019 q^4-10185 q^3-13327 q^2-7014 q+4337+12253 q^{-1} +11916 q^{-2} +3013 q^{-3} -9143 q^{-4} -13633 q^{-5} -8352 q^{-6} +2987 q^{-7} +11590 q^{-8} +12374 q^{-9} +4174 q^{-10} -8078 q^{-11} -13313 q^{-12} -8999 q^{-13} +1882 q^{-14} +10654 q^{-15} +12370 q^{-16} +5123 q^{-17} -6725 q^{-18} -12568 q^{-19} -9519 q^{-20} +396 q^{-21} +9107 q^{-22} +12003 q^{-23} +6335 q^{-24} -4511 q^{-25} -11000 q^{-26} -9870 q^{-27} -1796 q^{-28} +6409 q^{-29} +10771 q^{-30} +7563 q^{-31} -1310 q^{-32} -8082 q^{-33} -9319 q^{-34} -4130 q^{-35} +2602 q^{-36} +8045 q^{-37} +7763 q^{-38} +1982 q^{-39} -3984 q^{-40} -7074 q^{-41} -5221 q^{-42} -1130 q^{-43} +4071 q^{-44} +6014 q^{-45} +3720 q^{-46} -115 q^{-47} -3501 q^{-48} -4123 q^{-49} -3012 q^{-50} +447 q^{-51} +2891 q^{-52} +3087 q^{-53} +1745 q^{-54} -378 q^{-55} -1682 q^{-56} -2487 q^{-57} -1152 q^{-58} +302 q^{-59} +1223 q^{-60} +1377 q^{-61} +814 q^{-62} +165 q^{-63} -955 q^{-64} -843 q^{-65} -547 q^{-66} -48 q^{-67} +313 q^{-68} +497 q^{-69} +567 q^{-70} -28 q^{-71} -124 q^{-72} -285 q^{-73} -232 q^{-74} -181 q^{-75} +16 q^{-76} +262 q^{-77} +88 q^{-78} +123 q^{-79} - q^{-80} -38 q^{-81} -141 q^{-82} -96 q^{-83} +45 q^{-84} -2 q^{-85} +63 q^{-86} +39 q^{-87} +38 q^{-88} -36 q^{-89} -40 q^{-90} + q^{-91} -20 q^{-92} +9 q^{-93} +9 q^{-94} +23 q^{-95} -6 q^{-96} -9 q^{-97} +4 q^{-98} -7 q^{-99} +5 q^{-102} -3 q^{-104} + q^{-105} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




