10 145
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 145's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X5,12,6,13 X8394 X2,9,3,10 X11,16,12,17 X17,10,18,11 X7,18,8,19 X13,20,14,1 X19,14,20,15 X15,6,16,7 |
| Gauss code | 1, -4, 3, -1, -2, 10, -7, -3, 4, 6, -5, 2, -8, 9, -10, 5, -6, 7, -9, 8 |
| Dowker-Thistlethwaite code | 4 8 -12 -18 2 -16 -20 -6 -10 -14 |
| Conway Notation | [22,3,3-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{4, 11}, {10, 3}, {1, 5}, {2, 4}, {3, 9}, {8, 10}, {9, 6}, {11, 7}, {5, 8}, {6, 2}, {7, 1}] |
[edit Notes on presentations of 10 145]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 145"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X5,12,6,13 X8394 X2,9,3,10 X11,16,12,17 X17,10,18,11 X7,18,8,19 X13,20,14,1 X19,14,20,15 X15,6,16,7 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, -2, 10, -7, -3, 4, 6, -5, 2, -8, 9, -10, 5, -6, 7, -9, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -12 -18 2 -16 -20 -6 -10 -14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[22,3,3-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{-1,-1,-2,1,-2,-1,-3,-2,1,-2,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{4, 11}, {10, 3}, {1, 5}, {2, 4}, {3, 9}, {8, 10}, {9, 6}, {11, 7}, {5, 8}, {6, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+t-3+ t^{-1} + t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+5 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 3, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} + q^{-7} - q^{-8} + q^{-9} - q^{-10} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{10}+z^2 a^8+a^8-a^6+z^4 a^4+4 z^2 a^4+2 a^4} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^7 a^{11}-6 z^5 a^{11}+10 z^3 a^{11}-5 z a^{11}+z^8 a^{10}-6 z^6 a^{10}+10 z^4 a^{10}-6 z^2 a^{10}+a^{10}+2 z^7 a^9-12 z^5 a^9+18 z^3 a^9-6 z a^9+z^8 a^8-6 z^6 a^8+9 z^4 a^8-4 z^2 a^8+a^8+z^7 a^7-6 z^5 a^7+8 z^3 a^7-2 z a^7-2 z^2 a^6+a^6-z a^5+z^4 a^4-4 z^2 a^4+2 a^4} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{32}-q^{30}+q^{24}+q^{14}+q^{10}+q^8+q^6} |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{156}+q^{152}-q^{148}+q^{142}-2 q^{138}-q^{130}-3 q^{128}-q^{126}+q^{124}-q^{122}-q^{120}-q^{118}-2 q^{116}+2 q^{114}-2 q^{112}-q^{110}+q^{108}+2 q^{104}+2 q^{102}+q^{98}+q^{96}+2 q^{92}+q^{88}+2 q^{82}-q^{78}-3 q^{76}+q^{74}-q^{72}-3 q^{66}+2 q^{64}+q^{62}-2 q^{60}-q^{54}+3 q^{52}+2 q^{48}+q^{46}+3 q^{42}+q^{38}+q^{32}+q^{30}} |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{21}+q^{13}+q^5+q^3} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-q^{56}-q^{46}+q^{44}+q^{42}-q^{40}-q^{34}-q^{32}-q^{30}-q^{28}+q^{26}+q^{24}+2 q^{22}-q^{18}+2 q^{16}-q^{12}+q^{10}+q^8+q^6} |
| 3 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{32}-q^{30}+q^{24}+q^{14}+q^{10}+q^8+q^6} |
| 1,1 | |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{82}+q^{80}+q^{78}-q^{76}-q^{74}-q^{72}-q^{70}+q^{64}+q^{60}+q^{58}-q^{56}-q^{54}-q^{52}-2 q^{48}-2 q^{46}-q^{44}-2 q^{42}-q^{40}+2 q^{36}+q^{34}+2 q^{32}+2 q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+2 q^{16}+q^{14}+q^{12}} |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{66}+q^{62}+q^{60}-2 q^{56}-q^{54}-2 q^{52}-3 q^{50}-q^{46}+2 q^{40}+q^{38}+q^{34}-q^{30}-q^{28}+q^{26}+q^{22}+3 q^{20}+q^{18}+2 q^{16}+q^{14}+q^{12}} |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{43}-q^{41}-q^{39}+q^{33}+q^{31}-q^{25}+q^{19}+q^{17}+q^{15}+q^{13}+q^{11}+q^9} |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{88}+q^{86}+q^{84}+q^{82}+q^{80}-q^{74}-2 q^{72}-2 q^{70}-2 q^{68}-3 q^{66}-3 q^{64}-2 q^{62}-2 q^{60}-2 q^{58}-q^{56}+2 q^{54}+2 q^{52}+3 q^{50}+4 q^{48}+2 q^{46}-q^{42}-2 q^{40}-3 q^{38}-q^{36}+q^{34}+2 q^{32}+3 q^{30}+3 q^{28}+4 q^{26}+2 q^{24}+2 q^{22}+q^{20}+q^{18}} |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{54}-q^{52}-q^{50}-q^{48}+q^{42}+q^{40}+q^{38}-q^{32}-q^{30}+q^{24}+q^{22}+2 q^{20}+q^{18}+q^{16}+q^{14}+q^{12}} |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{66}-q^{62}-q^{60}+q^{54}+q^{50}+q^{46}-q^{38}-q^{34}-q^{30}+q^{28}+q^{26}+q^{22}+q^{20}+q^{18}+q^{14}+q^{12}} |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{108}+q^{100}-q^{90}-2 q^{88}-q^{82}-q^{80}-q^{72}+q^{56}+q^{48}-q^{44}+q^{42}+q^{40}-q^{36}+q^{34}+q^{32}+q^{30}+q^{26}+q^{24}+q^{22}+q^{18}} |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{90}+q^{86}+q^{84}+q^{82}-q^{78}-q^{76}-3 q^{74}-2 q^{72}-3 q^{70}-2 q^{68}-2 q^{66}+q^{60}+2 q^{58}+2 q^{56}+2 q^{54}+q^{52}+q^{50}-2 q^{44}-q^{42}-2 q^{40}+2 q^{32}+2 q^{30}+3 q^{28}+2 q^{26}+2 q^{24}+q^{22}+q^{20}+q^{18}} |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{156}+q^{152}-q^{148}+q^{142}-2 q^{138}-q^{130}-3 q^{128}-q^{126}+q^{124}-q^{122}-q^{120}-q^{118}-2 q^{116}+2 q^{114}-2 q^{112}-q^{110}+q^{108}+2 q^{104}+2 q^{102}+q^{98}+q^{96}+2 q^{92}+q^{88}+2 q^{82}-q^{78}-3 q^{76}+q^{74}-q^{72}-3 q^{66}+2 q^{64}+q^{62}-2 q^{60}-q^{54}+3 q^{52}+2 q^{48}+q^{46}+3 q^{42}+q^{38}+q^{32}+q^{30}} |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 145"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+t-3+ t^{-1} + t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4+5 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} + q^{-7} - q^{-8} + q^{-9} - q^{-10} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{10}+z^2 a^8+a^8-a^6+z^4 a^4+4 z^2 a^4+2 a^4} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^7 a^{11}-6 z^5 a^{11}+10 z^3 a^{11}-5 z a^{11}+z^8 a^{10}-6 z^6 a^{10}+10 z^4 a^{10}-6 z^2 a^{10}+a^{10}+2 z^7 a^9-12 z^5 a^9+18 z^3 a^9-6 z a^9+z^8 a^8-6 z^6 a^8+9 z^4 a^8-4 z^2 a^8+a^8+z^7 a^7-6 z^5 a^7+8 z^3 a^7-2 z a^7-2 z^2 a^6+a^6-z a^5+z^4 a^4-4 z^2 a^4+2 a^4} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 145"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^2+t-3+ t^{-1} + t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} + q^{-7} - q^{-8} + q^{-9} - q^{-10} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (5, -12) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 145. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} - q^{-7} + q^{-8} +2 q^{-9} -4 q^{-10} +2 q^{-11} +4 q^{-12} -5 q^{-13} +2 q^{-14} +2 q^{-15} -5 q^{-16} +2 q^{-17} +2 q^{-18} -4 q^{-19} +2 q^{-20} + q^{-21} -2 q^{-22} +2 q^{-23} - q^{-24} - q^{-25} +2 q^{-26} - q^{-27} - q^{-28} + q^{-29} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-10} + q^{-12} +2 q^{-13} - q^{-14} -2 q^{-15} +3 q^{-17} + q^{-18} -2 q^{-19} -2 q^{-20} +2 q^{-21} + q^{-22} - q^{-23} -2 q^{-24} + q^{-25} + q^{-26} - q^{-28} - q^{-29} + q^{-30} + q^{-31} -3 q^{-33} +4 q^{-35} -5 q^{-37} - q^{-38} +6 q^{-39} +2 q^{-40} -6 q^{-41} -2 q^{-42} +5 q^{-43} +2 q^{-44} -3 q^{-45} -2 q^{-46} +3 q^{-47} -2 q^{-49} +2 q^{-51} -2 q^{-53} + q^{-55} + q^{-56} - q^{-57} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-8} - q^{-13} + q^{-16} +2 q^{-17} - q^{-18} +2 q^{-19} -4 q^{-20} - q^{-21} + q^{-22} +9 q^{-24} -3 q^{-25} -4 q^{-26} -8 q^{-27} -2 q^{-28} +17 q^{-29} +2 q^{-30} -4 q^{-31} -14 q^{-32} -5 q^{-33} +20 q^{-34} +3 q^{-35} -2 q^{-36} -16 q^{-37} -6 q^{-38} +21 q^{-39} +3 q^{-40} -4 q^{-41} -16 q^{-42} -5 q^{-43} +21 q^{-44} +4 q^{-45} -5 q^{-46} -14 q^{-47} -5 q^{-48} +18 q^{-49} +5 q^{-50} -3 q^{-51} -12 q^{-52} -6 q^{-53} +13 q^{-54} +7 q^{-55} - q^{-56} -10 q^{-57} -6 q^{-58} +8 q^{-59} +6 q^{-60} - q^{-61} -5 q^{-62} -3 q^{-63} +4 q^{-64} +3 q^{-65} -4 q^{-66} -2 q^{-67} + q^{-68} +6 q^{-69} +2 q^{-70} -8 q^{-71} -3 q^{-72} + q^{-73} +7 q^{-74} +3 q^{-75} -5 q^{-76} -3 q^{-77} -2 q^{-78} +5 q^{-79} + q^{-80} -2 q^{-81} - q^{-82} - q^{-83} +4 q^{-84} - q^{-85} - q^{-86} - q^{-87} - q^{-88} +3 q^{-89} - q^{-92} - q^{-93} + q^{-94} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




