T(23,2)
|
|
Visit T(23,2)'s page at Knotilus!
Visit T(23,2)'s page at the original Knot Atlas! |
T(23,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X9,33,10,32 X33,11,34,10 X11,35,12,34 X35,13,36,12 X13,37,14,36 X37,15,38,14 X15,39,16,38 X39,17,40,16 X17,41,18,40 X41,19,42,18 X19,43,20,42 X43,21,44,20 X21,45,22,44 X45,23,46,22 X23,1,24,46 X1,25,2,24 X25,3,26,2 X3,27,4,26 X27,5,28,4 X5,29,6,28 X29,7,30,6 X7,31,8,30 X31,9,32,8 |
Gauss code | -16, 17, -18, 19, -20, 21, -22, 23, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15 |
Dowker-Thistlethwaite code | 24 26 28 30 32 34 36 38 40 42 44 46 2 4 6 8 10 12 14 16 18 20 22 |
Conway Notation | Data:T(23,2)/Conway Notation |
Knot presentations
Planar diagram presentation | X9,33,10,32 X33,11,34,10 X11,35,12,34 X35,13,36,12 X13,37,14,36 X37,15,38,14 X15,39,16,38 X39,17,40,16 X17,41,18,40 X41,19,42,18 X19,43,20,42 X43,21,44,20 X21,45,22,44 X45,23,46,22 X23,1,24,46 X1,25,2,24 X25,3,26,2 X3,27,4,26 X27,5,28,4 X5,29,6,28 X29,7,30,6 X7,31,8,30 X31,9,32,8 |
Gauss code | |
Dowker-Thistlethwaite code | 24 26 28 30 32 34 36 38 40 42 44 46 2 4 6 8 10 12 14 16 18 20 22 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(23,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 23, 22 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (66, 506) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 22 is the signature of T(23,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | χ | |||||||||
69 | 1 | -1 | ||||||||||||||||||||||||||||||||
67 | 0 | |||||||||||||||||||||||||||||||||
65 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
63 | 0 | |||||||||||||||||||||||||||||||||
61 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
59 | 0 | |||||||||||||||||||||||||||||||||
57 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
55 | 0 | |||||||||||||||||||||||||||||||||
53 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
51 | 0 | |||||||||||||||||||||||||||||||||
49 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
47 | 0 | |||||||||||||||||||||||||||||||||
45 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
43 | 0 | |||||||||||||||||||||||||||||||||
41 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
39 | 0 | |||||||||||||||||||||||||||||||||
37 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
35 | 0 | |||||||||||||||||||||||||||||||||
33 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
31 | 0 | |||||||||||||||||||||||||||||||||
29 | 1 | 1 | 0 | |||||||||||||||||||||||||||||||
27 | 0 | |||||||||||||||||||||||||||||||||
25 | 1 | 1 | ||||||||||||||||||||||||||||||||
23 | 1 | 1 | ||||||||||||||||||||||||||||||||
21 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[23, 2]] |
Out[2]= | 23 |
In[3]:= | PD[TorusKnot[23, 2]] |
Out[3]= | PD[X[9, 33, 10, 32], X[33, 11, 34, 10], X[11, 35, 12, 34],X[35, 13, 36, 12], X[13, 37, 14, 36], X[37, 15, 38, 14], X[15, 39, 16, 38], X[39, 17, 40, 16], X[17, 41, 18, 40], X[41, 19, 42, 18], X[19, 43, 20, 42], X[43, 21, 44, 20], X[21, 45, 22, 44], X[45, 23, 46, 22], X[23, 1, 24, 46], X[1, 25, 2, 24], X[25, 3, 26, 2], X[3, 27, 4, 26], X[27, 5, 28, 4],X[5, 29, 6, 28], X[29, 7, 30, 6], X[7, 31, 8, 30], X[31, 9, 32, 8]] |
In[4]:= | GaussCode[TorusKnot[23, 2]] |
Out[4]= | GaussCode[-16, 17, -18, 19, -20, 21, -22, 23, -1, 2, -3, 4, -5, 6, -7,8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23,1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15] |
In[5]:= | BR[TorusKnot[23, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[23, 2]][t] |
Out[6]= | -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 1 |
In[7]:= | Conway[TorusKnot[23, 2]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[23, 2]], KnotSignature[TorusKnot[23, 2]]} |
Out[9]= | {23, 22} |
In[10]:= | J=Jones[TorusKnot[23, 2]][q] |
Out[10]= | 11 13 14 15 16 17 18 19 20 21 22 23 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[23, 2]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[23, 2]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[23, 2]], Vassiliev[3][TorusKnot[23, 2]]} |
Out[14]= | {0, 506} |
In[15]:= | Kh[TorusKnot[23, 2]][q, t] |
Out[15]= | 21 23 25 2 29 3 29 4 33 5 33 6 37 7 |