In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[6, Alternating, 1]] |
Out[2]= | 6 |
In[3]:= | PD[Link[6, Alternating, 1]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[12, 8, 5, 7], X[8, 12, 9, 11],
X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[6, Alternating, 1]] |
Out[4]= | GaussCode[{1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}] |
In[5]:= | BR[Link[6, Alternating, 1]] |
Out[5]= | BR[Link[6, Alternating, 1]] |
In[6]:= | alex = Alexander[Link[6, Alternating, 1]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[6, Alternating, 1]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[6, Alternating, 1]], KnotSignature[Link[6, Alternating, 1]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[6, Alternating, 1]][q] |
Out[10]= | -(9/2) -(7/2) 3 2 2 3/2
-q + q - ---- + ---- - ------- + 2 Sqrt[q] - q
5/2 3/2 Sqrt[q]
q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[6, Alternating, 1]][q] |
Out[12]= | -16 2 -12 2 2 -6 -4 -2 2 6
q + --- + q + --- + -- + q + q - q - q + q
14 10 8
q q q |
In[13]:= | Kauffman[Link[6, Alternating, 1]][a, z] |
Out[13]= | 3 5 3
4 a a z 3 5 2 2 2 z 5 3 4
a - -- - -- + - + a z + 2 a z + 3 z + 3 a z - -- - a z - 2 z -
z z a a
2 4 4 4 5 3 5
3 a z - a z - a z - a z |
In[14]:= | {Vassiliev[2][Link[6, Alternating, 1]], Vassiliev[3][Link[6, Alternating, 1]]} |
Out[14]= | 53
{0, -(--)}
24 |
In[15]:= | Kh[Link[6, Alternating, 1]][q, t] |
Out[15]= | 1 1
1 + Alternating + ---------------- + --------------- +
4 10 4 8
Alternating q Alternating q
1 2 1 2
--------------- + --------------- + --------------- + -- +
3 8 2 6 2 4 2
Alternating q Alternating q Alternating q q
2 2 2 4
-------------- + Alternating q + Alternating q
2
Alternating q |