9 25
|  |  | 
|   | Visit 9 25's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 9 25's page at Knotilus! Visit 9 25's page at the original Knot Atlas! | 9 25 Quick Notes | 
Knot presentations
| Planar diagram presentation | X1425 X3849 X5,12,6,13 X9,17,10,16 X13,18,14,1 X17,14,18,15 X15,11,16,10 X11,6,12,7 X7283 | 
| Gauss code | -1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5 | 
| Dowker-Thistlethwaite code | 4 8 12 2 16 6 18 10 14 | 
| Conway Notation | [22,21,2] | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["9 25"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 47, -2 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (0, -1) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 25. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
| 
 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | χ | |||||||||
| 3 | 1 | 1 | ||||||||||||||||||
| 1 | 1 | -1 | ||||||||||||||||||
| -1 | 4 | 1 | 3 | |||||||||||||||||
| -3 | 4 | 2 | -2 | |||||||||||||||||
| -5 | 4 | 3 | 1 | |||||||||||||||||
| -7 | 4 | 4 | 0 | |||||||||||||||||
| -9 | 3 | 4 | -1 | |||||||||||||||||
| -11 | 2 | 4 | 2 | |||||||||||||||||
| -13 | 1 | 3 | -2 | |||||||||||||||||
| -15 | 2 | 2 | ||||||||||||||||||
| -17 | 1 | -1 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[Knot[9, 25]] | 
| Out[2]= | 9 | 
| In[3]:= | PD[Knot[9, 25]] | 
| Out[3]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 17, 10, 16],X[13, 18, 14, 1], X[17, 14, 18, 15], X[15, 11, 16, 10],X[11, 6, 12, 7], X[7, 2, 8, 3]] | 
| In[4]:= | GaussCode[Knot[9, 25]] | 
| Out[4]= | GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 7, -8, 3, -5, 6, -7, 4, -6, 5] | 
| In[5]:= | BR[Knot[9, 25]] | 
| Out[5]= | BR[5, {-1, -1, 2, -1, -3, -2, -2, 4, -3, 4}] | 
| In[6]:= | alex = Alexander[Knot[9, 25]][t] | 
| Out[6]= | 3 12 2 | 
| In[7]:= | Conway[Knot[9, 25]][z] | 
| Out[7]= | 4 1 - 3 z | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {Knot[9, 25], Knot[11, NonAlternating, 134]} | 
| In[9]:= | {KnotDet[Knot[9, 25]], KnotSignature[Knot[9, 25]]} | 
| Out[9]= | {47, -2} | 
| In[10]:= | J=Jones[Knot[9, 25]][q] | 
| Out[10]= | -8 3 5 7 8 8 7 5 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {Knot[9, 25], Knot[11, NonAlternating, 25]} | 
| In[12]:= | A2Invariant[Knot[9, 25]][q] | 
| Out[12]= | -26 -24 2 -18 2 2 2 -6 -4 3 4 | 
| In[13]:= | Kauffman[Knot[9, 25]][a, z] | 
| Out[13]= | 2 4 6 8 3 5 7 9 2 | 
| In[14]:= | {Vassiliev[2][Knot[9, 25]], Vassiliev[3][Knot[9, 25]]} | 
| Out[14]= | {0, -1} | 
| In[15]:= | Kh[Knot[9, 25]][q, t] | 
| Out[15]= | 2 4 1 2 1 3 2 4 3 | 


