10 83

From Knot Atlas
Revision as of 20:52, 27 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search


10 82.gif

10_82

10 84.gif

10_84

10 83.gif Visit 10 83's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 83's page at Knotilus!

Visit 10 83's page at the original Knot Atlas!

10 83 Quick Notes


Warning. There is a mixup in the original (1976) Rolfsen table between the pictures and the invariants of the knots 10_83 and 10_86. That mixup lead to a similar mixup here. In the new (2003) edition of Rolfsen's book the mixup was corrected and on August 17, 2004, it was corrected here (actually in Dror's original Knot Atlas) consistently with Rolfsen's correction. In the years between 1976 and 2003 other authors fixed the problem in different ways and our enumeration here may be different than theirs. Dror would like to thank Z-X. Tao for telling him about the (now corrected) mixup here and A. Stoimenow for telling him about the mixup in Rolfsen's original table.

Knot presentations

Planar diagram presentation X1627 X5,16,6,17 X13,1,14,20 X7,15,8,14 X3948 X9,5,10,4 X19,11,20,10 X11,19,12,18 X17,13,18,12 X15,2,16,3
Gauss code -1, 10, -5, 6, -2, 1, -4, 5, -6, 7, -8, 9, -3, 4, -10, 2, -9, 8, -7, 3
Dowker-Thistlethwaite code 6 8 16 14 4 18 20 2 12 10
Conway Notation [.31.20]

Three dimensional invariants

Symmetry type Chiral
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-2][-10]
Hyperbolic Volume 14.2581
A-Polynomial See Data:10 83/A-polynomial

[edit Notes for 10 83's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 10 83's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 83, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 83. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-3-2-101234567χ
17          1-1
15         2 2
13        41 -3
11       62  4
9      74   -3
7     76    1
5    67     1
3   57      -2
1  37       4
-1 14        -3
-3 3         3
-51          -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[10, 83]]
Out[2]=  
10
In[3]:=
PD[Knot[10, 83]]
Out[3]=  
PD[X[1, 6, 2, 7], X[5, 16, 6, 17], X[13, 1, 14, 20], X[7, 15, 8, 14], 
 X[3, 9, 4, 8], X[9, 5, 10, 4], X[19, 11, 20, 10], X[11, 19, 12, 18], 

X[17, 13, 18, 12], X[15, 2, 16, 3]]
In[4]:=
GaussCode[Knot[10, 83]]
Out[4]=  
GaussCode[-1, 10, -5, 6, -2, 1, -4, 5, -6, 7, -8, 9, -3, 4, -10, 2, -9, 
  8, -7, 3]
In[5]:=
BR[Knot[10, 83]]
Out[5]=  
BR[4, {1, 1, 2, -1, 2, -3, 2, 2, -3, 2, -3}]
In[6]:=
alex = Alexander[Knot[10, 83]][t]
Out[6]=  
      2    9    19             2      3

-23 + -- - -- + -- + 19 t - 9 t + 2 t

      3    2   t
t t
In[7]:=
Conway[Knot[10, 83]][z]
Out[7]=  
     2      4      6
1 + z  + 3 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[10, 83], Knot[11, Alternating, 307], Knot[11, Alternating, 323]}
In[9]:=
{KnotDet[Knot[10, 83]], KnotSignature[Knot[10, 83]]}
Out[9]=  
{83, 2}
In[10]:=
J=Jones[Knot[10, 83]][q]
Out[10]=  
      -2   4              2       3       4       5      6      7    8

-7 - q + - + 11 q - 13 q + 14 q - 13 q + 10 q - 6 q + 3 q - q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[10, 73], Knot[10, 83]}
In[12]:=
A2Invariant[Knot[10, 83]][q]
Out[12]=  
  -6   2       2      4      6    8      12      14      16    18

-q + -- + 3 q - 3 q + 2 q - q + 2 q - 2 q + 3 q - q -

       4
      q

  20    22    24
q + q - q
In[13]:=
Kauffman[Knot[10, 83]][a, z]
Out[13]=  
                                                     2      2       2
    -6   2     -2   3 z   6 z   4 z   z      2   2 z    4 z    10 z

1 + a + -- + a - --- - --- - --- - - + 2 z + ---- - ---- - ----- -

          4          7     5     3    a            8      6      4
         a          a     a     a                 a      a      a

    2      3      3       3       3      3                    4
 2 z    2 z    9 z    20 z    13 z    3 z       3      4   6 z
 ---- - ---- + ---- + ----- + ----- + ---- - a z  - 7 z  - ---- + 
   2      9      7      5       3      a                     8
  a      a      a      a       a                            a

     4       4    4    5       5       5       5       5
 10 z    22 z    z    z    11 z    18 z    17 z    10 z       5
 ----- + ----- - -- + -- - ----- - ----- - ----- - ----- + a z  + 
   6       4      2    9     7       5       3       a
  a       a      a    a     a       a       a

           6       6       6      6      7      7      7      7
    6   3 z    10 z    22 z    5 z    5 z    5 z    6 z    6 z
 4 z  + ---- - ----- - ----- - ---- + ---- + ---- + ---- + ---- + 
          8      6       4       2      7      5      3     a
         a      a       a       a      a      a      a

    8       8      8      9      9
 5 z    10 z    5 z    2 z    2 z
 ---- + ----- + ---- + ---- + ----
   6      4       2      5      3
a a a a a
In[14]:=
{Vassiliev[2][Knot[10, 83]], Vassiliev[3][Knot[10, 83]]}
Out[14]=  
{0, 2}
In[15]:=
Kh[Knot[10, 83]][q, t]
Out[15]=  
         3     1       3      1      4    3 q      3        5

7 q + 5 q + ----- + ----- + ---- + --- + --- + 7 q t + 6 q t +

             5  3    3  2      2   q t    t
            q  t    q  t    q t

    5  2      7  2      7  3      9  3      9  4      11  4
 7 q  t  + 7 q  t  + 6 q  t  + 7 q  t  + 4 q  t  + 6 q   t  + 

    11  5      13  5    13  6      15  6    17  7
2 q t + 4 q t + q t + 2 q t + q t