9 46

From Knot Atlas
Revision as of 19:06, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

9 45.gif

9_45

9 47.gif

9_47

9 46.gif Visit 9 46's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 46's page at Knotilus!

Visit 9 46's page at the original Knot Atlas!

9_46 is also known as the pretzel knot P(3,3,-3).


9 46 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X7,12,8,13 X10,3,11,4 X2,11,3,12 X5,14,6,15 X13,6,14,7 X15,18,16,1 X9,17,10,16 X17,9,18,8
Gauss code 1, -4, 3, -1, -5, 6, -2, 9, -8, -3, 4, 2, -6, 5, -7, 8, -9, 7
Dowker-Thistlethwaite code 4 10 -14 -12 -16 2 -6 -18 -8
Conway Notation [3,3,21-]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 1
Bridge index 3
Super bridge index 4
Nakanishi index 2
Maximal Thurston-Bennequin number [-7][-1]
Hyperbolic Volume 4.7517
A-Polynomial See Data:9 46/A-polynomial

[edit Notes for 9 46's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 46's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 9, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-2, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 46. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-10χ
1      22
-1      11
-3    11 0
-5   1   -1
-7   1   -1
-9 11    0
-11       0
-131      1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 46]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 46]]
Out[3]=  
PD[X[4, 2, 5, 1], X[7, 12, 8, 13], X[10, 3, 11, 4], X[2, 11, 3, 12], 
 X[5, 14, 6, 15], X[13, 6, 14, 7], X[15, 18, 16, 1], X[9, 17, 10, 16], 

X[17, 9, 18, 8]]
In[4]:=
GaussCode[Knot[9, 46]]
Out[4]=  
GaussCode[1, -4, 3, -1, -5, 6, -2, 9, -8, -3, 4, 2, -6, 5, -7, 8, -9, 7]
In[5]:=
BR[Knot[9, 46]]
Out[5]=  
BR[4, {-1, 2, -1, 2, -3, -2, 1, -2, -3}]
In[6]:=
alex = Alexander[Knot[9, 46]][t]
Out[6]=  
    2

5 - - - 2 t

t
In[7]:=
Conway[Knot[9, 46]][z]
Out[7]=  
       2
1 - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[6, 1], Knot[9, 46], Knot[11, NonAlternating, 67], 
  Knot[11, NonAlternating, 97], Knot[11, NonAlternating, 139]}
In[9]:=
{KnotDet[Knot[9, 46]], KnotSignature[Knot[9, 46]]}
Out[9]=  
{9, 0}
In[10]:=
J=Jones[Knot[9, 46]][q]
Out[10]=  
     -6    -5    -4   2     -2   1

2 + q - q + q - -- + q - -

                      3         q
q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 46]}
In[12]:=
A2Invariant[Knot[9, 46]][q]
Out[12]=  
     -20    -18    -12    -10    -8    -6    -2      2
2 + q    + q    - q    - q    - q   - q   + q   + 2 q
In[13]:=
Kauffman[Knot[9, 46]][a, z]
Out[13]=  
     2    4    6              3        5        2  2      4  2

2 + a - a - a - 2 a z - 6 a z - 4 a z + 3 a z + 9 a z +

    6  2      3      3  3      5  3      2  4      4  4      6  4
 6 a  z  + a z  + 8 a  z  + 7 a  z  - 4 a  z  - 9 a  z  - 5 a  z  - 

    3  5      5  5    2  6      4  6    6  6    3  7    5  7
5 a z - 5 a z + a z + 2 a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[9, 46]], Vassiliev[3][Knot[9, 46]]}
Out[14]=  
{0, 3}
In[15]:=
Kh[Knot[9, 46]][q, t]
Out[15]=  
1           1        1       1       1       1       1      1

- + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ---- q 13 6 9 5 9 4 7 3 5 3 3 2 3

q t q t q t q t q t q t q t